Patents by Inventor Teresita Frianeza Kullberg

Teresita Frianeza Kullberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10446835
    Abstract: A compound MjXp which is particularly suitable for use in a battery prepared by the complexometric precursor formulation methodology wherein: Mj is at least one positive ion selected from the group consisting of alkali metals, alkaline earth metals and transition metals and j is an integer representing the moles of said positive ion per moles of said MjXp; and Xp, a negative anion or polyanion from Groups IIIA, IVA, VA, VIA and VIIA and may be one or more anion or polyanion and p is an integer representing the moles of said negative ion per moles of said MjXp.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: October 15, 2019
    Assignee: Nano One Materials Corp.
    Inventor: Teresita Frianeza-Kullberg
  • Patent number: 10374232
    Abstract: A compound MjXp which is particularly suitable for use in a battery prepared by the complexometric precursor formulation methodology wherein: Mj is at least one positive ion selected from the group consisting of alkali metals, alkaline earth metals and transition metals and j is an integer representing the moles of said positive ion per moles of said MjXp; and Xp, a negative anion or polyanion from Groups IIIA, IV A, VA, VIA and VIIA and may be one or more anion or polyanion and p is an integer representing the moles of said negative ion per moles of said MjXp.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 6, 2019
    Assignee: Nano One Materials Corp.
    Inventor: Teresita Frianeza-Kullberg
  • Patent number: 10283763
    Abstract: A method of forming a battery with improved properties is provided. The battery has a cathode material prepared by the complexometric formulation methodology comprising MjXp wherein: Mj is at least one positive ion selected from the group consisting of alkali metals, alkaline earth metals and transition metals and n represents the moles of positive ion per mole of MjXp; and Xp is a negative anion or polyanion selected from Groups IIIA, IV A, VA, VIA and VIIA and may be one or more anion or polyanion and p representing the moles of negative ion per moles of MjXp. The battery has a discharge capacity at the 1000th discharge cycle of at least 120 mAh/g at room temperature at a discharge rate of 1 C when discharged from at least 4.6 volts to at least 2.0 volts.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: May 7, 2019
    Assignee: Nano One Materials Corp.
    Inventors: Teresita Frianeza-Kullberg, Lennart H. Kullberg
  • Patent number: 9698419
    Abstract: A battery with improved properties is provided. The battery has a cathode material prepared by the complexometric formulation methodology comprising MnXp wherein: Mj is at least one positive ion selected from the group consisting of alkali metals, alkaline earth metals and transition metals and n represents the moles of said positive ion per mole of said MjXp; and Xp is a negative anion or polyanion selected from Groups IIIA, IV A, VA, VIA and VIIA and may be one or more anion or polyanion and p representing the moles of said negative ion per moles of said MjXp. The battery has a discharge capacity at the 1000th discharge cycle of at least 120 mAh/g at room temperature at a discharge rate of 1 C when discharged from at least 4.6 volts to at least 2.0 volts.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: July 4, 2017
    Assignee: Nano One Materials Corp.
    Inventors: Teresita Frianeza-Kullberg, Lennart H. Kullberg
  • Publication number: 20170054146
    Abstract: A battery with improved properties is provided. The battery has a cathode material prepared by the complexometric formulation methodology comprising MjXp wherein: Mj is at least one positive ion selected from the group consisting of alkali metals, alkaline earth metals and transition metals and n represents the moles of said positive ion per mole of said MjXp; and Xp is a negative anion or polyanion selected from Groups IIIA, IV A, VA, VIA and VIIA and may be one or more anion or polyanion and p representing the moles of said negative ion per moles of said MjXp. The battery has a discharge capacity at the 1000th discharge cycle of at least 120 mAh/g at room temperature at a discharge rate of 1 C when discharged from at least 4.6 volts to at least 2.0 volts.
    Type: Application
    Filed: September 27, 2016
    Publication date: February 23, 2017
    Inventors: Teresita Frianeza-Kullberg, Lennart H. Kullberg
  • Publication number: 20160013482
    Abstract: A compound MjXp which is particularly suitable for use in a battery prepared by the complexometric precursor formulation methodology wherein: Mj is at least one positive ion selected from the group consisting of alkali metals, alkaline earth metals and transition metals and j is an integer representing the moles of said positive ion per moles of said MjXp; and Xp, a negative anion or polyanion from Groups IIIA, IVA, VA, VIA and VIIA and may be one or more anion or polyanion and p is an integer representing the moles of said negative ion per moles of said MjXp.
    Type: Application
    Filed: September 15, 2015
    Publication date: January 14, 2016
    Inventor: Teresita Frianeza-Kullberg
  • Patent number: 9159999
    Abstract: A compound MjXp which is particularly suitable for use in a battery prepared by the complexometric precursor formulation methodology wherein: Mj is at least one positive ion selected from the group consisting of alkali metals, alkaline earth metals and transition metals and j is an integer representing the moles of said positive ion per moles of said MjXp; and Xp, a negative anion or polyanion from Groups IIIA, IV A, VA, VIA and VIIA and may be one or more anion or polyanion and p is an integer representing the moles of said negative ion per moles of said MjXp.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 13, 2015
    Assignee: Nano One Materials Corp.
    Inventor: Teresita Frianeza-Kullberg
  • Patent number: 9136534
    Abstract: A method of forming a powder MjXp wherein Mj is a positive ion or several positive ions selected from alkali metal, alkaline earth metal or transition metal; and Xp is a monoatomic or a polyatomic anion selected from Groups IIIA, IVA, VA, VIA or VIIA; called complexometric precursor formulation or CPF. The method includes the steps of: providing a first reactor vessel with a first gas diffuser and an first agitator; providing a second reactor vessel with a second gas diffuser and a second agitator; charging the first reactor vessel with a first solution comprising a first salt of Mj; introducing gas into the first solution through the first gas diffuser, charging the second reactor vessel with a second solution comprising a salt of Mp; adding the second solution to the first solution to form a complexcelle; drying the complexcelle, to obtain a dry powder; and calcining the dried powder of said MjXp.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 15, 2015
    Assignee: Nano One Materials Corp.
    Inventor: Teresita Frianeza-Kullberg
  • Publication number: 20140272579
    Abstract: A compound MjXp which is particularly suitable for use in a battery prepared by the complexometric precursor formulation methodology wherein: Mj is at least one positive ion selected from the group consisting of alkali metals, alkaline earth metals and transition metals and j is an integer representing the moles of said positive ion per moles of said MjXp; and Xp, a negative anion or polyanion from Groups IIIA, IV A, VA, VIA and VIIA and may be one or more anion or polyanion and p is an integer representing the moles of said negative ion per moles of said MjXp.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: PERFECT LITHIUM CORP.
    Inventor: Teresita Frianeza-Kullberg
  • Patent number: 8057764
    Abstract: Methods and apparatus for the production of low sodium lithium carbonate and lithium chloride from a brine concentrated to about 6.0 wt % lithium are disclosed. Methods and apparatus for direct recovery of technical grade lithium chloride from the concentrated brine are also disclosed.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: November 15, 2011
    Assignee: Chemetall Foote Corporation
    Inventors: Daniel Alfred Boryta, Teresita Frianeza Kullberg, Anthony Michael Thurston
  • Publication number: 20110123427
    Abstract: Methods and apparatus for the production of low sodium lithium carbonate and lithium chloride from a brine concentrated to about 6.0 wt % lithium are disclosed. Methods and apparatus for direct recovery of technical grade lithium chloride from the concentrated brine are also disclosed.
    Type: Application
    Filed: December 7, 2010
    Publication date: May 26, 2011
    Inventors: Daniel Alfred BORYTA, Teresita Frianeza KULLBERG, Anthony Michael THURSTON
  • Patent number: 7858057
    Abstract: Methods and apparatus for the production of low sodium lithium carbonate and lithium chloride from a brine concentrated to about 6.0 wt % lithium are disclosed. Methods and apparatus for direct recovery of technical grade lithium chloride from the concentrated brine are also disclosed.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: December 28, 2010
    Assignee: Chemetall Foote Corporation
    Inventors: Daniel Alfred Boryta, Teresita Frianeza Kullberg, Anthony Michael Thurston
  • Publication number: 20090214414
    Abstract: Methods and apparatus for the production of low sodium lithium carbonate and lithium chloride from a brine concentrated to about 6.0 wt % lithium are disclosed. Methods and apparatus for direct recovery of technical grade lithium chloride from the concentrated brine are also disclosed.
    Type: Application
    Filed: April 17, 2009
    Publication date: August 27, 2009
    Inventors: Daniel Alfred Boryta, Teresita Frianeza Kullberg, Anthony Michael Thurston
  • Patent number: 7547426
    Abstract: Methods and apparatus for the production of low sodium lithium carbonate and lithium chloride from a brine concentrated to about 6.0 wt % lithium are disclosed. Methods and apparatus for direct recovery of technical grade lithium chloride from the concentrated brine are also disclosed.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: June 16, 2009
    Assignee: Chemetall Foote Corporation
    Inventors: Daniel Alfred Boryta, Teresita Frianeza Kullberg, Anthony Michael Thurston
  • Patent number: 7449161
    Abstract: Methods and apparatus for the production of low sodium lithium carbonate and lithium chloride from a brine concentrated to about 6.0 wt % lithium are disclosed. Methods and apparatus for direct recovery of technical grade lithium chloride from the concentrated brine are also disclosed.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: November 11, 2008
    Assignee: Chemetall Foote Corporation
    Inventors: Daniel Alfred Boryta, Teresita Frianeza Kullberg, Anthony Michael Thurston
  • Publication number: 20080233042
    Abstract: Methods and apparatus for the production of low sodium lithium carbonate and lithium chloride from a brine concentrated to about 6.0 wt % lithium are disclosed. Methods and apparatus for direct recovery of technical grade lithium chloride from the concentrated brine are also disclosed.
    Type: Application
    Filed: May 2, 2008
    Publication date: September 25, 2008
    Inventors: Daniel Alfred Boryta, Teresita Frianeza Kullberg, Anthony Michael Thurston
  • Patent number: 7390466
    Abstract: Methods and apparatus for the production of low sodium lithium carbonate and lithium chloride from a brine concentrated to about 6.0 wt % lithium are disclosed. Methods and apparatus for direct recovery of technical grade lithium chloride from the concentrated brine are also disclosed.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: June 24, 2008
    Assignee: Chemetall Foote Corporation
    Inventors: Daniel Alfred Boryta, Teresita Frianeza Kullberg, Anthony Michael Thurston
  • Patent number: 7214355
    Abstract: Metal carbonates that are insoluble in water but that have a corresponding metal biocarbonate salt that is more than 75% by weight soluble in water are purified by preparing an aqueous slurry of the metal carbonate: introducing carbon dioxide gas to form a corresponding metal biocarbonate solution and heating that solution to form a purified metal carbonate and precipitate it.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: May 8, 2007
    Assignee: Chemetall Foote Corporation
    Inventors: Daniel Alfred Boryta, Teresita Frianeza Kullberg, Anthony Michael Thurston
  • Patent number: 7157065
    Abstract: A continuous process for directly preparing high purity lithium carbonate from lithium containing brines by preparing a brine containing about 6.0 wt % lithium and further containing other ions naturally occurring in brines; adding mother liquor containing carbonate to precipitate magnesium; adding a solution of CaO and sodium carbonate to remove calcium and any residual magnesium; precipitating lithium carbonate from the purified brine by adding soda ash solution; filtering to obtain solid lithium carbonate; preparing an aqueous slurry of the lithium carbonate and introducing carbon dioxide gas at a temperature from at least minus 10 to +40° C.; passing the lithium bicarbonate solution through a filter to clarify the solution; introducing said filtered lithium bicarbonate solution into a reactor and adjusting the temperature of the solution to from 60–100° C. to precipitate ultra-pure lithium carbonate.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: January 2, 2007
    Assignee: Chemetall Foote Corporation
    Inventors: Daniel Alfred Boryta, Teresita Frianeza Kullberg, Anthony Michael Thurston
  • Patent number: 6936229
    Abstract: Methods and apparatus for the production of low sodium lithium carbonate and lithium chloride from a brine concentrated to about 6.0 wt % lithium are disclosed. Methods and apparatus for direct recovery of technical grade lithium chloride from the concentrated brine are also disclosed.
    Type: Grant
    Filed: November 7, 2000
    Date of Patent: August 30, 2005
    Assignee: Chemetall Foote Corporation
    Inventors: Daniel Alfred Boryta, Teresita Frianeza Kullberg, Anthony Michael Thurston