Patents by Inventor Terrence Chen

Terrence Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210158543
    Abstract: Described herein are systems, methods and instrumentalities associated with motion tracking and strain determination. A motion tracking apparatus as described herein may track the motion of an anatomical structure from a source image to a target image and determine corresponding points on one or more surfaces of the anatomical structure in both the source image and the target image. Using these surface points, the motion tracking apparatus may calculate one or more strain parameters associated with the anatomical structure and provide the strain parameters for medical diagnosis and/or treatment.
    Type: Application
    Filed: October 14, 2020
    Publication date: May 27, 2021
    Applicant: SHANGHAI UNITED IMAGING INTELLIGENCE CO., LTD.
    Inventors: Shanhui Sun, Hanchao Yu, Qiaoying Huang, Zhang Chen, Terrence Chen
  • Publication number: 20210158511
    Abstract: Described herein are systems, methods and instrumentalities associated with image segmentation. The systems, methods and instrumentalities have a hierarchical structure for producing a coarse segmentation of an anatomical structure and then refining the coarse segmentation based on a shape prior of the anatomical structure. The coarse segmentation may be generated using a multi-task neural network and based on both a segmentation loss and a regression loss. The refined segmentation may be obtained by deforming the shape prior using one or more of a shape-based model or a learning-based model.
    Type: Application
    Filed: September 8, 2020
    Publication date: May 27, 2021
    Applicant: SHANGHAI UNITED IMAGING INTELLIGENCE CO., LTD.
    Inventors: Yimo Guo, Shanhui Sun, Terrence Chen
  • Publication number: 20210158512
    Abstract: Described herein are neural network-based systems, methods and instrumentalities associated with imagery data processing. The neural networks may be pre-trained to learn parameters or models for processing the imagery data and upon deployment the neural networks may automatically perform further optimization of the learned parameters or models based on a small set of online data samples. The online optimization may be facilitated via offline meta-learning so that the optimization may be accomplished quickly in a few optimization steps.
    Type: Application
    Filed: September 30, 2020
    Publication date: May 27, 2021
    Applicant: SHANGHAI UNITED IMAGING INTELLIGENCE CO., LTD.
    Inventors: Shanhui Sun, Hanchao Yu, Xiao Chen, Zhang Chen, Terrence Chen
  • Publication number: 20210158167
    Abstract: Methods and systems for enhancing a distributed medical network. For example, a computer-implemented method includes inputting training data corresponding to each local computer into their corresponding machine learning model; generating a plurality of local losses including generating a local loss for each machine learning model based at least in part on the corresponding training data; generating a plurality of local parameter gradients including generating a local parameter gradient for each machine learning model based at least in part on the corresponding local loss; generating a global parameter update based at least in part on the plurality of local parameter gradients; and updating each machine learning model hosted at each local computer of the plurality of local computers by at least updating their corresponding active parameter set based at least in part on the global parameter update.
    Type: Application
    Filed: November 25, 2019
    Publication date: May 27, 2021
    Inventors: ABHISHEK SHARMA, ARUN INNANJE, ZIYAN WU, SHANHUI SUN, TERRENCE CHEN
  • Publication number: 20210158510
    Abstract: Described herein are neural network-based systems, methods and instrumentalities associated with estimating a thickness of an anatomical structure based on a visual representation of the anatomical structure and a machine-learned thickness prediction model. The visual representation may include an image or a segmentation mask of the anatomical structure. The thickness prediction model may be learned based on ground truth information derived by applying a partial differential equation such as Laplace's equation to the visual representation and solving the partial differential equation. When the visual representation includes an image of the anatomical structure, the systems, methods and instrumentalities described herein may also be capable of generating a segmentation mask of the anatomical structure based on the image.
    Type: Application
    Filed: September 8, 2020
    Publication date: May 27, 2021
    Applicant: SHANGHAI UNITED IMAGING INTELLIGENCE CO., LTD.
    Inventors: Qiaoying Huang, Shanhui Sun, Zhang Chen, Terrence Chen
  • Publication number: 20210157464
    Abstract: Cardiac features captured via an MRI scan may be tracked and analyzed using a system described herein. The system may receive a plurality of MR slices derived via the MRI scan and present the MR slices in a manner that allows a user to navigate through the MR slices. Responsive to the user selecting one of the MR slices, contextual and global cardiac information associated with the selected slice may be determined and displayed. The contextual information may correspond to the selected slice and the global information may encompass information gathered across the plurality of MR slices. A user may have the ability to navigate between the different display areas and evaluate the health of the heart with both local and global perspectives.
    Type: Application
    Filed: September 8, 2020
    Publication date: May 27, 2021
    Applicant: SHANGHAI UNITED IMAGING INTELLIGENCE CO., LTD.
    Inventors: Arun Innanje, Xiao Chen, Shanhui Sun, Terrence Chen
  • Publication number: 20210150330
    Abstract: A system comprising a first computing apparatus in communication with multiple second computing apparatuses. The first computing apparatus may obtain a plurality of first trained machine learning models for a task from the multiple second computing apparatuses. At least a portion of parameter values of the plurality of first trained machine learning models may be different from each other. The first computing apparatus may also obtain a plurality of training samples. The first computing apparatus may further determine, based on the plurality of training samples, a second trained machine learning model by learning from the plurality of first trained machine learning models.
    Type: Application
    Filed: November 18, 2019
    Publication date: May 20, 2021
    Applicant: SHANGHAI UNITED IMAGING INTELLIGENCE CO., LTD.
    Inventors: Abhishek SHARMA, Arun INNANJE, Ziyan WU, Shanhui SUN, Terrence CHEN
  • Patent number: 11009467
    Abstract: A model-based method of inspecting a specimen for presence of one or more interferent, such as Hemolysis, Icterus, and/or Lipemia (HI L) is provided. The method includes generating a pixelated image of the specimen in a first color space, determining color components (e.g., an a-value and a b-value) for pixels in the pixelated image, classifying of the pixels as being either liquid or non-liquid, defining one or more liquid regions based upon the pixels classified as liquid, and determining a presence of one or more interferent within the one or more liquid regions. The liquid classification is based upon a liquid classification model. Pixel classification may be based on a trained multiclass classifier. Interference level for the one or more interferent may be provided. Testing apparatus adapted to carry out the method are described, as are other aspects.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: May 18, 2021
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: JinHyeong Park, Yao-Jen Chang, Wen Wu, Terrence Chen, Benjamin Pollack
  • Patent number: 11000247
    Abstract: A method is provided for operating a medical imaging X-ray device. The method records an earlier individual image of a series of images of a patient using a recording facility. The location of a medical component is identified, and the medical component is localized in the earlier individual image using a computing facility. A subregion of the earlier individual image is specified, determined by the position of the medical component localized in the earlier individual image and with the localized medical component represented. A later individual image is recorded and the medical component is localized in the later individual image. The later individual image is displayed, the later individual image averaged exclusively region-specifically in the region of the medical component with the subregion of the earlier individual image. Method acts are repeated with the displayed individual image as the earlier individual image to enhance visibility of the medical component.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: May 11, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Oliver Baruth, Terrence Chen
  • Publication number: 20210133984
    Abstract: A system for physiological motion measurement is provided. The system may acquire a reference image corresponding to a reference motion phase of an ROI and a target image of the ROI corresponding to a target motion phase, wherein the reference motion phase may be different from the target motion phase. The system may identify one or more feature points relating to the ROI from the reference image, and determine a motion field of the feature points from the reference motion phase to the target motion phase using a motion prediction model. An input of the motion prediction model may include at least the reference image and the target image. The system may further determine a physiological condition of the ROI based on the motion field.
    Type: Application
    Filed: November 4, 2019
    Publication date: May 6, 2021
    Applicant: SHANGHAI UNITED IMAGING INTELLIGENCE CO., LTD.
    Inventors: Shanhui SUN, Zhang CHEN, Terrence CHEN, Ziyan WU
  • Publication number: 20210133971
    Abstract: A method of characterizing a serum or plasma portion of a specimen in a specimen container provides a fine-grained HILN index (hemolysis, icterus, lipemia, normal) of the serum or plasma portion of the specimen, wherein the H, I, and L classes may each have five to seven sub-classes. The HILN index may also have one un-centrifuged class. Pixel data of an input image of the specimen container may be processed by a deep semantic segmentation network having, in some embodiments, more than 100 layers. A small front-end container segmentation network may be used to determine a container type and boundary, which may additionally be input to the deep semantic segmentation network. A discriminative network may be used to train the deep semantic segmentation network to generate a homogeneously structured output. Quality check modules and testing apparatus configured to carry out the method are also described, as are other aspects.
    Type: Application
    Filed: June 10, 2019
    Publication date: May 6, 2021
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Kai Ma, Yao-Jen Chang, Terrence Chen, Benjamin S. Pollack
  • Publication number: 20210125331
    Abstract: Systems and methods for generating and tracking shapes of a target may be provided. The method may include obtaining at least one first resolution image corresponding to at least one of a sequence of time frames of a medical scan. The method may include determining, according to a predictive model, one or more shape parameters regarding a shape of a target from the at least one first resolution image. The method may include determining, based on the one or more shape parameters and a shape model, at least one shape of the target from the at least one first resolution image. The method may further include generating a second resolution visual representation of the target by rendering the determined shape of the target.
    Type: Application
    Filed: October 25, 2019
    Publication date: April 29, 2021
    Applicant: SHANGHAI UNITED IMAGING INTELLIGENCE CO., LTD.
    Inventors: Shanhui SUN, Zhang CHEN, Terrence CHEN
  • Publication number: 20210063520
    Abstract: Methods and systems for acquiring a visualization of a target. For example, a computer-implemented method for acquiring a visualization of a target includes: generating a first sampling mask; acquiring first k-space data of the target at a first phase using the first sampling mask; generating a first image of the target based at least in part on the first k-space data; generating a second sampling mask using a model based on at least one selected from the first sampling mask, the first k-space data, and the first image; acquiring second k-space data of the target at a second phase using the second sampling mask; and generating a second image of the target based at least in part on the second k-space data.
    Type: Application
    Filed: August 29, 2019
    Publication date: March 4, 2021
    Inventors: Zhang Chen, Shanhui Sun, Terrence Chen
  • Publication number: 20210064927
    Abstract: A method of training a neural network (Convolutional Neural Network-CNN) including reduced graphical annotation input is provided. The training method can be used to train a Testing CNN that can be used for determining Hemolysis (H), Icterus (I), and/or Lipemia (L), or Normal (N) of a serum or plasma portion of a test specimen. The training method includes capturing training images of multiple specimen containers including training specimens, generating region proposals of the serum or plasma portions of the training specimens; and selecting the best matches for the location, size and shape of the region proposals for the multiple training specimens. The obtained features (network and weights) from the training CNN can be used in a testing CNN. Quality check modules and testing apparatus adapted to carry out the training method, and characterization methods using abounding box regressor are described, as are other aspects.
    Type: Application
    Filed: January 8, 2019
    Publication date: March 4, 2021
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Stefan Kluckner, Yao-Jen Chang, Kai Ma, Vivek Singh, Terrence Chen, Benjamin S. Pollack
  • Patent number: 10887558
    Abstract: Methods and systems for automatically setting up a sensor connected to an apparatus. For example, a computer-implemented method for automatically setting up a sensor connected to an apparatus includes: receiving a sensor-connection signal corresponding to a connection established between the sensor and the apparatus; determining whether a streaming microservice corresponding to the sensor has been downloaded onto the apparatus; if the streaming microservice has not been downloaded onto the apparatus, determining whether the streaming microservice corresponding to the sensor is supported by the apparatus; if the streaming microservice is supported by the apparatus, downloading a streaming microservice docker from a docker registry, the streaming microservice docker including the streaming microservice and a driver corresponding to the sensor; and deploying the streaming microservice with the driver corresponding to the sensor.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: January 5, 2021
    Assignee: Shanghai United Imaging Intelligence Co., Ltd.
    Inventors: Arun Innanje, Abhishek Sharma, Ziyan Wu, Terrence Chen
  • Patent number: 10824832
    Abstract: Barcode tag conditions on sample tubes are detected utilizing side view images of sample tubes for streamlining handling in clinical laboratory automation systems. The condition of the tags may be classified into classes, each divided into a list of additional subcategories that cover individual characteristics of the tag quality. According to an embodiment, a tube characterization station (TCS) is utilized to obtain the side view images. The TCS enables the simultaneous or near-simultaneous collection of three images for each tube, resulting in a 360 degree side view for each tube. The method is based on a supervised scene understanding concept, resulting in an explanation of each pixel into its semantic meaning. Two parallel low-level cues for condition recognition, in combination with a tube model extraction cue, may be utilized. The semantic scene information is then integrated into a mid-level representation for final decision making into one of the condition classes.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: November 3, 2020
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Stefan Kluckner, Yao-Jen Chang, Wen Wu, Benjamin Pollack, Terrence Chen
  • Patent number: 10816538
    Abstract: A model-based method of inspecting a specimen for presence of an interferent (H, I, and/or L). The method includes capturing images of the specimen at multiple different exposures times and at multiple spectra having different nominal wavelengths, selection of optimally-exposed pixels from the captured images to generate optimally-exposed image data for each spectra, identifying a serum or plasma portion of the specimen, and classifying whether an interferent is present or absent within the serum or plasma portion. Testing apparatus and quality check modules adapted to carry out the method are described, as are other aspects.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: October 27, 2020
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Stefan Kluckner, Yao-Jen Chang, Terrence Chen, Benjamin S. Pollack, Patrick Wissmann
  • Patent number: 10803619
    Abstract: A method for identifying a feature in a first image comprises establishing an initial database of image triplets, and in a pose estimation processor, training a deep learning neural network using the initial database of image triplets, calculating a pose for the first image using the deep learning neural network, comparing the calculated pose to a validation database populated with images data to identify an error case in the deep learning neural network, creating a new set of training data including a plurality of error cases identified in a plurality of input images and retraining the deep learning neural network using the new set of training data. The deep learning neural network may be iteratively retrained with a series of new training data sets. Statistical analysis is performed on a plurality of error cases to select a subset of the error cases included in the new set of training data.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: October 13, 2020
    Assignee: Siemens Mobility GmbH
    Inventors: Kai Ma, Shanhui Sun, Stefan Kluckner, Ziyan Wu, Terrence Chen, Jan Ernst
  • Publication number: 20200297237
    Abstract: For training for and performance of patient modeling from surface data in a medical system, a progressive multi-task model is used. Different tasks for scanning are provided, such as landmark estimation and patient pose estimation. One or more features learned for one task are used as fixed or constant features in the other task. This progressive approach based on shared features increases efficiency while avoiding reductions in accuracy for any given task.
    Type: Application
    Filed: March 22, 2019
    Publication date: September 24, 2020
    Inventors: Birgi Tamersoy, Vivek Kumar Singh, Kai Ma, Terrence Chen, Andreas Wimmer
  • Patent number: 10783655
    Abstract: A method of obtaining a medical image includes obtaining, via a camera, at least one surface image of a patient. A pose of the patient is determined from the at least one surface image of the patient using at least one spatial information module. The patient is positioned, via a moveable bed, to an imaging start position and a medical image of the patient is obtained using a medical imaging modality.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: September 22, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Zhuokai Zhao, Yao-jen Chang, Ruhan Sa, Kai Ma, Jianping Wang, Vivek Kumar Singh, Terrence Chen, Andreas Wimmer, Birgi Tamersoy