Patents by Inventor Teruhiko OHARA
Teruhiko OHARA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240301114Abstract: The present invention provides a novel polycarbonate diol and a polyurethane using the polycarbonate diol as raw materials. The novel polycarbonate diol produces polycarbonate diol-based polyurethane which has a high degree of hardness, superior abrasion resistance, and superior hydrophilicity, and is usable for an application such as a paint, a coating agent, a synthetic leather, an artificial leather, and a highly-functional elastomers, or the like. The present invention also provides an active-energy radiation curable polymer composition giving a cured film having a superior contamination resistance and high degree of hardness. The present invention is obtained, for example, by reacting specific two types of diols with diester carbonate in the presence of a transesterification catalyst being a compound using a metal of Group 1 or 2 on the periodic table.Type: ApplicationFiled: May 14, 2024Publication date: September 12, 2024Applicant: MITSUBISHI CHEMICAL CORPORATIONInventors: Haruhiko KUSAKA, Kazuki WAKABAYASHI, Masanori YAMAMOTO, Kazunao KUSANO, Hiroto ITO, Takashi KOMAYA, Teruhiko OHARA, Kentaro UCHINO, Haruo IIDUKA
-
Publication number: 20220041790Abstract: A thermoplastic polyurethane resin elastomer is obtained by reacting an isocyanate compound (I), an aliphatic alcohol (II) having a number average molecular weight determined from the hydroxyl value of less than 300 and having only a hydroxyl group as a functional group, and a polyol (III) having a number average molecular weight determined from the hydroxyl value of not less than 300 and not more than 10,000. The isocyanate compound (I) includes not less than 90 mol % in total of an aliphatic isocyanate compound containing two isocyanate groups and/or an alicyclic isocyanate compound containing two isocyanate groups. The aliphatic alcohol (II) includes not less than 90 mol % of a C12 or lower aliphatic diol. The polyol (III) includes not less than 80 mol % of a copolymerized polycarbonate diol (IIIA) including a linear repeating structural unit represented by formula (A) and a repeating structural unit represented by formula (B).Type: ApplicationFiled: October 21, 2021Publication date: February 10, 2022Applicant: MITSUBISHI CHEMICAL CORPORATIONInventors: Ryo YAMASHITA, Teruhiko OHARA, Mitsuharu KOBAYASHI, Takayuki YAMANAKA
-
Publication number: 20220041795Abstract: A thermoplastic polyurethane resin elastomer is obtained by reacting an isocyanate compound (I) containing ?90 mol % in total of an aliphatic and/or alicyclic isocyanate compound having two isocyanate groups, an aliphatic alcohol (II) having only a hydroxyl group as a functional group, and a polyol (III). The equivalent ratio of EIII:EI:EII is 1:2-6:1-5 with the proviso that 0.95?(EI)/((EII)+(EIII))?1.05, where EIII, EI, EII represent the hydroxyl equivalent, isocyanate equivalent, and hydroxyl equivalent of the polyol (III), isocyanate compound (I), and aliphatic alcohol (II), respectively. The aliphatic alcohol (II) has a Mn, which is a number average molecular weight determined from the hydroxyl value, of <300 and contains ?90 mol % of a C12 or lower aliphatic diol.Type: ApplicationFiled: October 21, 2021Publication date: February 10, 2022Applicant: MITSUBISHI CHEMICAL CORPORATIONInventors: Ryo YAMASHITA, Mitsuharu KOBAYASHI, Takayuki YAMANAKA, Teruhiko OHARA
-
Publication number: 20210115191Abstract: The present invention provides a novel polycarbonate diol and a polyurethane using the polycarbonate diol as raw materials. The novel polycarbonate diol produces polycarbonate diol-based polyurethane which has a high degree of hardness, superior abrasion resistance, and superior hydrophilicity, and is usable for an application such as a paint, a coating agent, a synthetic leather, an artificial leather, and a highly-functional elastomers, or the like. The present invention also provides an active-energy radiation curable polymer composition giving a cured film having a superior contamination resistance and high degree of hardness. The present invention is obtained, for example, by reacting specific two types of diols with diester carbonate in the presence of a transesterification catalyst being a compound using a metal of Group 1 or 2 on the periodic table.Type: ApplicationFiled: December 22, 2020Publication date: April 22, 2021Applicant: MITSUBISHI CHEMICAL CORPORATIONInventors: Haruhiko KUSAKA, Kazuki WAKABAYASHI, Masanori YAMAMOTO, Kazunao KUSANO, Hiroto ITO, Takashi KOMAYA, Teruhiko OHARA, Kentaro UCHINO, Haruo IIDUKA
-
Patent number: 10907012Abstract: A novel polycarbonate diol is useful as a raw material for producing a polycarbonate diol-based polyurethane with a high degree of hardness, superior abrasion resistance, and superior hydrophilicity. The polyurethane is useful in paints, coating agents, synthetic leathers, artificial leathers, and highly-functional elastomers, or the like. The polycarbonate diol is also useful for producing an active-energy radiation curable polymer composition giving a cured film having superior contamination resistance and high degree of hardness. The curable polymer composition contains a urethane(meth)acrylate oligomer obtained from the polycarbonate diol. The polycarbonate diol is obtained, for example, by reacting two specific types of diols with diester carbonate in the presence of a transesterification catalyst. The catalyst has a metal of Group 1 or 2 on the periodic table. A metal content of the transesterification catalyst is 100 weight ppm or less.Type: GrantFiled: October 15, 2012Date of Patent: February 2, 2021Assignee: MITSUBISHI CHEMICAL CORPORATIONInventors: Haruhiko Kusaka, Kazuki Wakabayashi, Masanori Yamamoto, Kazunao Kusano, Hiroto Ito, Takashi Komaya, Teruhiko Ohara, Kentaro Uchino, Haruo Iiduka
-
Patent number: 10619000Abstract: The invention relates to a method for producing a biomass-resource-derived polyurethane, which comprises: reacting a dicarboxylic acid and an aliphatic diol to produce a polyester polyol; and reacting the polyester polyol and a polyisocyanate compound, wherein the dicarboxylic acid contains at least one component derived from biomass resources, a content of an organic acid in the dicarboxylic acid is more than 0 ppm and not more than 1,000 ppm relative to the dicarboxylic acid, and a pKa value of the organic acid at 25° C. is not more than 3.7.Type: GrantFiled: May 16, 2019Date of Patent: April 14, 2020Assignee: Mitsubishi Chemical CorporationInventors: Teruhiko Ohara, Naoki Suzuki, Yasuko Nakajima, Hiroto Itou, Takayuki Aoshima, Naoki Sugai, Takanao Matsumoto
-
Publication number: 20190263960Abstract: The invention relates to a method for producing a biomass-resource-derived polyurethane, which comprises: reacting a dicarboxylic acid and an aliphatic diol to produce a polyester polyol; and reacting the polyester polyol and a polyisocyanate compound, wherein the dicarboxylic acid contains at least one component derived from biomass resources, a content of an organic acid in the dicarboxylic acid is more than 0 ppm and not more than 1,000 ppm relative to the dicarboxylic acid, and a pKa value of the organic acid at 25° C. is not more than 3.7.Type: ApplicationFiled: May 16, 2019Publication date: August 29, 2019Applicant: Mitsubishi Chemical CorporationInventors: Teruhiko OHARA, Naoki SUZUKI, Yasuko NAKAJIMA, Hiroto ITOU, Takayuki AOSHIMA, Naoki SUGAI, Takanao MATSUMOTO
-
Patent number: 10351658Abstract: The invention relates to a method for producing a biomass-resource-derived polyurethane, which comprises: reacting a dicarboxylic acid and an aliphatic diol to produce a polyester polyol; and reacting the polyester polyol and a polyisocyanate compound, wherein the dicarboxylic acid contains at least one component derived from biomass resources, a content of an organic acid in the dicarboxylic acid is more than 0 ppm and not more than 1,000 ppm relative to the dicarboxylic acid, and a pKa value of the organic acid at 25° C. is not more than 3.7.Type: GrantFiled: March 27, 2018Date of Patent: July 16, 2019Assignee: MITSUBISHI CHEMICAL CORPORATIONInventors: Teruhiko Ohara, Naoki Suzuki, Yasuko Nakajima, Hiroto Itou, Takayuki Aoshima, Naoki Sugai, Takanao Matsumoto
-
Publication number: 20180215859Abstract: The invention relates to a method for producing a biomass-resource-derived polyurethane, which comprises: reacting a dicarboxylic acid and an aliphatic diol to produce a polyester polyol; and reacting the polyester polyol and a polyisocyanate compound, wherein the dicarboxylic acid contains at least one component derived from biomass resources, a content of an organic acid in the dicarboxylic acid is more than 0 ppm and not more than 1,000 ppm relative to the dicarboxylic acid, and a pKa value of the organic acid at 25° C. is not more than 3.7.Type: ApplicationFiled: March 27, 2018Publication date: August 2, 2018Applicant: Mitsubishi Chemical CorporationInventors: Teruhiko OHARA, Naoki SUZUKI, Yasuko NAKAJIMA, Hiroto ITOU, Takayuki AOSHIMA, Naoki SUGAI, Takanao MATSUMOTO
-
Patent number: 9963537Abstract: The invention relates to a method for producing a biomass-resource-derived polyurethane, which comprises: reacting a dicarboxylic acid and an aliphatic diol to produce a polyester polyol; and reacting the polyester polyol and a polyisocyanate compound, wherein the dicarboxylic acid contains at least one component derived from biomass resources, a content of an organic acid in the dicarboxylic acid is more than 0 ppm and not more than 1,000 ppm relative to the dicarboxylic acid, and a pKa value of the organic acid at 25° C. is not more than 3.7.Type: GrantFiled: June 6, 2016Date of Patent: May 8, 2018Assignee: MITSUBISHI CHEMICAL CORPORATIONInventors: Teruhiko Ohara, Naoki Suzuki, Yasuko Nakajima, Hiroto Itou, Takayuki Aoshima, Naoki Sugai, Takanao Matsumoto
-
Publication number: 20160272751Abstract: The invention relates to a method for producing a biomass-resource-derived polyurethane, which comprises: reacting a dicarboxylic acid and an aliphatic diol to produce a polyester polyol; and reacting the polyester polyol and a polyisocyanate compound, wherein the dicarboxylic acid contains at least one component derived from biomass resources, a content of an organic acid in the dicarboxylic acid is more than 0 ppm and not more than 1,000 ppm relative to the dicarboxylic acid, and a pKa value of the organic acid at 25° C. is not more than 3.7.Type: ApplicationFiled: June 6, 2016Publication date: September 22, 2016Applicant: Mitsubishi Chemical CorporationInventors: Teruhiko OHARA, Naoki Suzuki, Yasuko Nakajima, Hiroto Itou, Takayuki Aoshima, Naoki Sugai, Takanao Matsumoto
-
Patent number: 9394397Abstract: The invention relates to a method for producing a biomass-resource-derived polyurethane, which comprises: reacting a dicarboxylic acid and an aliphatic diol to produce a polyester polyol; and reacting the polyester polyol and a polyisocyanate compound, wherein the dicarboxylic acid contains at least one component derived from biomass resources, a content of an organic acid in the dicarboxylic acid is more than 0 ppm and not more than 1,000 ppm relative to the dicarboxylic acid, and a pKa value of the organic acid at 25° C. is not more than 3.7.Type: GrantFiled: October 1, 2012Date of Patent: July 19, 2016Assignee: MITSUBISHI CHEMICAL CORPORATIONInventors: Teruhiko Ohara, Naoki Suzuki, Yasuko Nakajima, Hiroto Itou, Takayuki Aoshima, Naoki Sugai, Takanao Matsumoto
-
Patent number: 9290614Abstract: The invention relates to a method for producing a biomass-resource-derived polyurethane, which comprises: reacting a dicarboxylic acid and an aliphatic diol to produce a polyester polyol; and reacting the polyester polyol and a polyisocyanate compound, wherein the dicarboxylic acid contains at least one component derived from biomass resources, a content of an organic acid in the dicarboxylic acid is more than 0 ppm and not more than 1,000 ppm relative to the dicarboxylic acid, and a pKa value of the organic acid at 25° C. is not more than 3.7.Type: GrantFiled: April 26, 2013Date of Patent: March 22, 2016Assignee: MITSUBISHI CHEMICAL CORPORATIONInventors: Teruhiko Ohara, Naoki Suzuki, Yasuko Nakajima, Hiroto Itou, Takayuki Aoshima, Naoki Sugai, Takanao Matsumoto
-
Publication number: 20130338395Abstract: The invention relates to a method for producing a biomass-resource-derived polyurethane, which comprises: reacting a dicarboxylic acid and an aliphatic diol to produce a polyester polyol; and reacting the polyester polyol and a polyisocyanate compound, wherein the dicarboxylic acid contains at least one component derived from biomass resources, a content of an organic acid in the dicarboxylic acid is more than 0 ppm and not more than 1,000 ppm relative to the dicarboxylic acid, and a pKa value of the organic acid at 25° C. is not more than 3.7.Type: ApplicationFiled: April 26, 2013Publication date: December 19, 2013Inventors: Teruhiko OHARA, Naoki Suzuki, Yasuko Nakajima, Hiroto Itou, Takayuki Aoshima, Naoki Sugai, Takanao Matsumoto
-
Publication number: 20130035448Abstract: The invention relates to a method for producing a biomass-resource-derived polyurethane, which comprises: reacting a dicarboxylic acid and an aliphatic diol to produce a polyester polyol; and reacting the polyester polyol and a polyisocyanate compound, wherein the dicarboxylic acid contains at least one component derived from biomass resources, a content of an organic acid in the dicarboxylic acid is more than 0 ppm and not more than 1,000 ppm relative to the dicarboxylic acid, and a pKa value of the organic acid at 25° C. is not more than 3.7.Type: ApplicationFiled: October 1, 2012Publication date: February 7, 2013Inventors: Teruhiko OHARA, Naoki Suzuki, Yasuko Nakajima, Hiroto Itou, Takayuki Aoshima, Naoki Sugai, Takanao Matsumoto