Patents by Inventor Tetsu Sugiyama

Tetsu Sugiyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8410745
    Abstract: When a short-circuit failure of any of switch portions (13) including switch elements (11) and parallel-connected feedback diodes (12) of an inverter circuit (7) is detected during the operation of a motor (1), a switch portion (13) where the short-circuit failure has occurred is checked for whether it is on the positive polarity side or the negative polarity side. The switch elements (11) are so controlled that all the switch portions (13) on the same polarity side as where the short-circuit has occurred are brought into a conducted state and all the others are disconnected. This prevents a large electric current from flowing into each switch portion of the inverter circuit without requiring any switch to block the power distribution between a motor and the inverter circuit when a short-circuit failure of the switch portion of the inverter circuit occurs.
    Type: Grant
    Filed: February 18, 2008
    Date of Patent: April 2, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masaharu Hosoda, Yuji Saito, Yasuyuki Danjo, Hideki Inoue, Tetsu Sugiyama, Junji Kato
  • Publication number: 20100036555
    Abstract: When a short-circuit failure of any of switch portions (13) including switch elements (11) and parallel-connected feedback diodes (12) of an inverter circuit (7) is detected during the operation of a motor (1), a switch portion (13) where the short-circuit failure has occurred is checked for whether it is on the positive polarity side or the negative polarity side. The switch elements (11) are so controlled that all the switch portions (13) on the same polarity side as where the short-circuit has occurred are brought into a conducted state and all the others disconnected. This prevents a large electric current from flowing into each switch portion of the inverter circuit without requiring any switch to block the power distribution between a motor and the inverter circuit when a short-circuit failure of the switch portion of the inverter circuit occurs.
    Type: Application
    Filed: February 18, 2008
    Publication date: February 11, 2010
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Masaharu Hosoda, Yuji Saito, Yasuyuki Danjo, Hideki Inoue, Tetsu Sugiyama, Junji Kato
  • Patent number: 7576511
    Abstract: The present invention employed a motor control device including: current sensors which detect currents in each phase of a three-phase motor; a coordinate conversion device which computes a d-axis actual current and a q-axis actual current in dq-coordinates from phase currents of three phases based on detection values of the current sensors; a voltage instruction computation device which computes a d-axis voltage instruction and a q-axis voltage instruction based on a deviation between a d-axis current instruction and the d-axis actual current and on a deviation between a q-axis current instruction and the q-axis actual current; a target phase current computation device which computes target phase currents for each phase from the d-axis current instruction and the q-axis current instruction; and a current difference computation device which computes, for each phase, a current difference between the phase current and the target phase current.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: August 18, 2009
    Assignee: Honda Motor Co., Ltd.
    Inventors: Hisayoshi Takahashi, Tetsu Sugiyama, Shintaro Uchida
  • Patent number: 7490685
    Abstract: A hybrid vehicle is provided that can be made to travel by means of motor generators (MG1, MG2) while an engine (E) is stopped, the engine (E), which can reduce pumping loss by running with a cylinder in a cut-off state, being connected to a front wheel (Wf) via the first motor/generator (MG1), an oil pump (13), a first clutch (14), a belt type continuously variable transmission (M), and a second clutch (20), and the second motor/generator (MG2) being connected to a rear wheel (Wr). When the vehicle is made to travel by driving or braking the rear wheel (Wr) with the second motor/generator (MG2), by driving the oil pump (13) with the first motor/generator (MG1) in a state in which the engine (E), which has stopped running, is put into a cylinder cut-off state and the second clutch (20) is disengaged, a hydraulic pressure for shifting the belt type continuously variable transmission (M) is generated.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: February 17, 2009
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Takashi Aoki, Tetsu Sugiyama, Nobuhiro Kira
  • Publication number: 20070205743
    Abstract: The present invention employed a motor control device including: current sensors which detect currents in each phase of a three-phase motor; a coordinate conversion device which computes a d-axis actual current and a q-axis actual current in dq-coordinates from phase currents of three phases based on detection values of the current sensors; a voltage instruction computation device which computes a d-axis voltage instruction and a q-axis voltage instruction based on a deviation between a d-axis current instruction and the d-axis actual current and on a deviation between a q-axis current instruction and the q-axis actual current; a target phase current computation device which computes target phase currents for each phase from the d-axis current instruction and the q-axis current instruction; and a current difference computation device which computes, for each phase, a current difference between the phase current and the target phase current.
    Type: Application
    Filed: February 12, 2007
    Publication date: September 6, 2007
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Hisayoshi Takahashi, Tetsu Sugiyama, Shintaro Uchida
  • Patent number: 7077223
    Abstract: A hybrid vehicle comprises an engine and a motor as power sources, the output power of at least one of the engine and the motor being transmitted to driving wheels for driving the hybrid vehicle, an accelerator pedal for increasing and decreasing driving power of the hybrid vehicle, and a drive control section which is provided for operating and stopping the engine and the motor, and which is adapted to control the engine and the motor in such a manner that when the engine is stopped and the motor is operated solely for driving the hybrid vehicle, change in desired output power is predicted, and the engine is maintained to be stopped, even when the predicted output power falls in a drive zone in which the engine is supposed to be operated, when the movement of the accelerator pedal in a predetermined period is less than a predetermined amount, and that the motor is controlled so as to output the predicted output power for continuing drive of the vehicle solely by the motor.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: July 18, 2006
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Masao Kubodera, Tetsu Sugiyama, Osamu Saito
  • Publication number: 20060137920
    Abstract: A hybrid vehicle is provided that can be made to travel by means of motor generators (MG1, MG2) while an engine (E) is stopped, the engine (E), which can reduce pumping loss by running with a cylinder in a cut-off state, being connected to a front wheel (Wf) via the first motor/generator (MG1), an oil pump (13), a first clutch (14), a belt type continuously variable transmission (M), and a second clutch (20), and the second motor/generator (MG2) being connected to a rear wheel (Wr). When the vehicle is made to travel by driving or braking the rear wheel (Wr) with the second motor/generator (MG2), by driving the oil pump (13) with the first motor/generator (MG1) in a state in which the engine (E), which has stopped running, is put into a cylinder cut-off state and the second clutch (20) is disengaged, a hydraulic pressure for shifting the belt type continuously variable transmission (M) is generated.
    Type: Application
    Filed: July 14, 2003
    Publication date: June 29, 2006
    Applicant: HONDA GIKEN KOGYO KAUSHIKI KAISHA
    Inventors: Takashi Aoki, Tetsu Sugiyama, Nobuhiro Kira
  • Patent number: 7040277
    Abstract: A cylinder operation control apparatus includes: an internal combustion engine (E) which is adapted to operate in an all-cylinder activation mode and in a cylinder deactivation mode; a lift amount changing device (VT) which is associated with the internal combustion engine (E), and which enables switching between the all-cylinder activation mode and the cylinder deactivation mode by changing the amount of lifts of intake and exhaust valves (IV, EV) associated with the cylinders; a lift operating device (33) which is associated with the lift amount changing device (VT) to operate the same; a cylinder activation enforcing device (33?) which is operatively disposed between the lift amount changing device (VT) and the lift operating device (33) so as to enforce the all-cylinder activation mode as necessary.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: May 9, 2006
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tetsuya Hasebe, Shigetaka Kuroda, Tetsu Sugiyama
  • Patent number: 6994069
    Abstract: A hydraulic control device for valve trains of an engine having cylinders which are optionally deactivated by applying oil pressure to the valve train so as to suspend the operations of associated intake and exhaust valves, the hydraulic control device comprising a plurality of rocker shafts which are arranged in line, and each of which is provided with hydraulic passages therein for applying oil pressure to each of the valve trains so as to activate and deactivate the cylinders, a plurality of sets of hydraulic circuits, which are provided to the rocker shafts, respectively, for applying oil pressure to each of the rocker shafts, and oil pressure measuring sections provided to the hydraulic circuits, respectively, for measuring oil pressure in each of the hydraulic circuits.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: February 7, 2006
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Tetsuya Hasebe, Tetsu Sugiyama, Tomofumi Ikematsu, Masao Kubodera, Yusuke Tatara
  • Patent number: 6988779
    Abstract: In a hybrid vehicle, an engine is connected to front wheels through a first motor/generator and a transmission, and a second motor/generator is connected to rear wheels. The first and second motors/generators are connected to a battery so that they are driven or regenerated. During regenerative braking of the vehicle, the distribution ratio of regenerative braking forces to the first and second motors/generators is controlled to become an ideal distribution ratio corresponding to a longitudinal acceleration (deceleration) of the vehicle, whereby the distribution ratio of the braking forces to the front and rear wheels can be always maintained at an optimal value during rapid deceleration as well as during slow deceleration of the vehicle, to improve the braking performance.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: January 24, 2006
    Assignee: Honda Motor Co., Ltd.
    Inventors: Hirokatsu Amanuma, Tetsu Sugiyama, Shuji Oshida
  • Publication number: 20050284438
    Abstract: A cylinder operation control apparatus includes: an internal combustion engine (E) which is adapted to operate in an all-cylinder activation mode and in a cylinder deactivation mode; a lift amount changing device (VT) which is associated with the internal combustion engine (E), and which enables switching between the all-cylinder activation mode and the cylinder deactivation mode by changing the amount of lifts of intake and exhaust valves (IV, EV) associated with the cylinders; a lift operating device (33) which is associated with the lift amount changing device (VT) to operate the same; a cylinder activation enforcing device (33?) which is operatively disposed between the lift amount changing device (VT) and the lift operating device (33) so as to enforce the all-cylinder activation mode as necessary.
    Type: Application
    Filed: September 26, 2003
    Publication date: December 29, 2005
    Inventors: Tetsuya Hasebe, Shigetaka Kuroda, Tetsu Sugiyama
  • Publication number: 20040238244
    Abstract: In a hybrid vehicle, an engine is connected to front wheels through a first motor/generator and a transmission, and a second motor/generator is connected to rear wheels. The first and second motors/generators are connected to a battery so that they are driven or regenerated. During regenerative braking of the vehicle, the distribution ratio of regenerative braking forces to the first and second motors/generators is controlled to become an ideal distribution ratio corresponding to a longitudinal acceleration (deceleration) of the vehicle, whereby the distribution ratio of the braking forces to the front and rear wheels can be always maintained at an optimal value during rapid deceleration as well as during slow deceleration of the vehicle, to improve the braking performance.
    Type: Application
    Filed: November 6, 2003
    Publication date: December 2, 2004
    Inventors: Hirokatsu Amanuma, Tetsu Sugiyama, Shuji Oshida
  • Patent number: 6726593
    Abstract: A vehicle control device for front and rear wheel drive vehicles, which have one wheel pair driven with an engine and the other pair driven with an electrical motor, and a torque converter with a lock-up mechanism controlling the engagement amount, has a lock-up control means changing the target slip amount to be set in accordance with driving conditions, a motor drive power setting means which sets the drive power distribution ratio of the motor and a compensation means which compensates the target slip amount according to the drive power distribution ratio set by the motor drive power setting means. The control device enables the setting of the optimum slip ratio of the torque converter to improve the fuel consumption, avoiding problems associated with: noise and vibration during the motor assisting.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: April 27, 2004
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Akihiro Yamamoto, Takahiro Yonekura, Tomohiro Nishi, Tetsu Sugiyama, Yusuke Tatara
  • Publication number: 20030221883
    Abstract: A hybrid vehicle comprises an engine and a motor as power sources, the output power of at least one of the engine and the motor being transmitted to driving wheels for driving the hybrid vehicle, an accelerator pedal for increasing and decreasing driving power of the hybrid vehicle, and a drive control section which is provided for operating and stopping the engine and the motor, and which is adapted to control the engine and the motor in such a manner that when the engine is stopped and the motor is operated solely for driving the hybrid vehicle, change in desired output power is predicted, and the engine is maintained to be stopped, even when the predicted output power falls in a drive zone in which the engine is supposed to be operated, when the movement of the accelerator pedal in a predetermined period is less than a predetermined amount, and that the motor is controlled so as to output the predicted output power for continuing drive of the vehicle solely by the motor.
    Type: Application
    Filed: May 23, 2003
    Publication date: December 4, 2003
    Applicant: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Masao Kubodera, Tetsu Sugiyama, Osamu Saito
  • Publication number: 20030217728
    Abstract: A hydraulic control device for valve trains of an engine having cylinders which are optionally deactivated by applying oil pressure to the valve train so as to suspend the operations of associated intake and exhaust valves, the hydraulic control device comprising a plurality of rocker shafts which are arranged in line, and each of which is provided with hydraulic passages therein for applying oil pressure to each of the valve trains so as to activate and deactivate the cylinders, a plurality of sets of hydraulic circuits, which are provided to the rocker shafts, respectively, for applying oil pressure to each of the rocker shafts, and oil pressure measuring sections provided to the hydraulic circuits, respectively, for measuring oil pressure in each of the hydraulic circuits.
    Type: Application
    Filed: May 20, 2003
    Publication date: November 27, 2003
    Applicant: HONDA GIKEN KOGYO KABUSHIKI KAISHA
    Inventors: Tetsuya Hasebe, Tetsu Sugiyama, Tomofumi Ikematsu, Masao Kubodera, Yusuke Tatara
  • Patent number: 6603278
    Abstract: A control system controls a hybrid vehicle having an engine for rotating a drive axle, an electric motor for assisting the engine in rotating the drive axle and converting kinetic energy of the drive axle into electric energy in a regenerative mode, and an electric energy storage unit connected through a drive control circuit to the electric motor, for storing electric energy. The control system has a regenerative quantity determining unit which includes first, second, and third first regenerative quantity establishing units. The first regenerative quantity establishing unit establishes a first regenerative quantity for the electric motor based on a vehicle speed of the hybrid vehicle when the supply of fuel to the engine is stopped upon deceleration of the hybrid vehicle. The second regenerative quantity establishing unit establishes a second regenerative quantity for the electric motor based on a remaining capacity of the electric energy storage unit.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: August 5, 2003
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Yoshikazu Oshima, Yusuke Tatara, Motoshi Ishikawa, Yutaka Tamagawa, Tetsu Sugiyama, Toru Yano
  • Patent number: 6427793
    Abstract: A hybrid vehicle is provided in which even if the temperature of a catalyst is decreased after a long period of travel by means of a motor, the temperature of the catalyst can be increased immediately and the exhaust of harmful materials can be suppressed.
    Type: Grant
    Filed: August 7, 2000
    Date of Patent: August 6, 2002
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Kohei Hanada, Masao Kubodera, Tetsu Sugiyama
  • Publication number: 20020063540
    Abstract: A control system controls a hybrid vehicle having an engine for rotating a drive axle, an electric motor for assisting the engine in rotating the drive axle and converting kinetic energy of the drive axle into electric energy in a regenerative mode, and an electric energy storage unit connected through a drive control circuit to the electric motor, for storing electric energy. The control system has a regenerative quantity determining unit which includes first, second, and third first regenerative quantity establishing units. The first regenerative quantity establishing unit establishes a first regenerative quantity for the electric motor based on a vehicle speed of the hybrid vehicle when the supply of fuel to the engine is stopped upon deceleration of the hybrid vehicle. The second regenerative quantity establishing unit establishes a second regenerative quantity for the electric motor based on a remaining capacity of the electric energy storage unit.
    Type: Application
    Filed: January 8, 2002
    Publication date: May 30, 2002
    Applicant: HONDA GIKEN KOGYO KABUSHIKI KAISHA
    Inventors: Yoshikazu Oshima, Yusuke Tatara, Motoshi Ishikawa, Yutaka Tamagawa, Tetsu Sugiyama, Toru Yano
  • Publication number: 20020058565
    Abstract: A control device for front and rear wheel drive vehicles, in which one of front and rear wheel pairs is driven with an engine and the other one of front and rear wheel pairs is driven with an electrical motor, and a torque converter with a lock-up mechanism capable of controlling the engagement amount is disposed between the engine and the one of wheel pairs, the control device comprising: a lock-up control means 68 and 69 for controlling the lock-up mechanism in such a manner that the engagement amount is changed to the target slip amount to be set in accordance with driving conditions of the front and rear wheel drive vehicle; a motor drive power setting means 61, 62 and 63 which sets the drive power of the motor; a compensation means (a target slip ratio setting unit) 67 which compensates the target slip amount according to the motor drive power set by the motor drive power setting means.
    Type: Application
    Filed: November 6, 2001
    Publication date: May 16, 2002
    Applicant: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Akihiro Yamamoto, Takahiro Yonekura, Tomohiro Nishi, Tetsu Sugiyama, Yusuke Tatara
  • Patent number: 6369531
    Abstract: A control system controls a hybrid vehicle having an engine for rotating a drive axle, an electric motor for assisting the engine in rotating the drive axle and converting kinetic energy of the drive axle into electric energy in a regenerative mode, and an electric energy storage unit connected through a drive control circuit to the electric motor, for storing electric energy. The control system has a regenerative quantity determining unit which includes first, second, and third first regenerative quantity establishing units. The first regenerative quantity establishing unit establishes a first regenerative quantity for the electric motor based on a vehicle speed of the hybrid vehicle when the supply of fuel to the engine is stopped upon deceleration of the hybrid vehicle. The second regenerative quantity establishing unit establishes a second regenerative quantity for the electric motor based on a remaining capacity of the electric energy storage unit.
    Type: Grant
    Filed: October 4, 2000
    Date of Patent: April 9, 2002
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Yoshikazu Oshima, Yusuke Tatara, Motoshi Ishikawa, Yutaka Tamagawa, Tetsu Sugiyama, Toru Yano