Patents by Inventor Tetsunori Kaji

Tetsunori Kaji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090008363
    Abstract: In an oxide film etching process, a plasma having a suitable ratio of CF3, CF2, CF, and F is necessary, and there is a problem in that the etching characteristic fluctuates in accordance with a temperature fluctuation of the etching chamber. Using a UHF type ECR plasma etching apparatus having a low electron temperature, a suitable dissociation can be obtained, and by maintaining the temperature of a side wall of the etching chamber in a range from 10° C. and 120° C., a stable etching characteristic can be obtained. Since oxide film etching using a low electron temperature and a high density plasma can be obtained, an etching result having a superior characteristic can be obtained, and, also, since the side wall temperature adjustment range is low, a simplified apparatus structure and a heat resistant performance countermeasure can be obtained easily.
    Type: Application
    Filed: September 2, 2008
    Publication date: January 8, 2009
    Inventors: Kazue Takahashi, Toshio Masuda, Tetsunori Kaji, Ken'etsu Yokogawa
  • Patent number: 7455790
    Abstract: A plasma processing method using a spectroscopic processing unit which includes separating spectrally plasma radiation emitted from a vacuum process chamber into component spectra, converting the component spectra into a time series of analogue electric signals composed of different wavelength components at a predetermined period, adding together analogue signals of the different wavelength components, converting a plurality of added signals into digital quantities on a predetermined-period basis, digitally adding together the plurality of added and converted signals a plural number of times on a plural-signal basis, determining discriminatively an end point of a predetermined plasma process on the basis of a signal resulting from the digital addition step, and terminating the predetermined plasma process.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: November 25, 2008
    Assignees: Hitachi, Ltd., Hitachi High-Technologies Corporation
    Inventors: Tetsunori Kaji, Shizuaki Kimura, Tatehito Usui, Takashi Fujii
  • Patent number: 7411684
    Abstract: A system including: a film thickness measuring apparatus for measuring a film thickness of a member to be processed, including: a differential waveform pattern data base for holding a standard pattern consisting of a time differential value of an interference light for each of multiple wavelengths with respect to a film thickness of a first member to be processed; a unit for measuring an intensity of an interference light for each of multiple wavelengths of a second member to be processed; a unit for obtaining a real pattern consisting of time differential values of measured interference light intensities; and a unit for determining a processed amount of the film by using a pattern of zero-cross points of the differential values of intensities of the received interference light for a second wavelength among the received interference lights of the multiple wavelengths.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: August 12, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Tatehito Usui, Takashi Fujii, Motohiko Yoshigai, Tetsunori Kaji
  • Publication number: 20070229845
    Abstract: A system including: a film thickness measuring apparatus for measuring a film thickness of a member to be processed, including: a differential waveform pattern data base for holding a standard pattern consisting of a time differential value of an interference light for each of multiple wavelengths with respect to a film thickness of a first member to be processed; a unit for measuring an intensity of an interference light for each of multiple wavelengths of a second member to be processed; a unit for obtaining a real pattern consisting of time differential values of measured interference light intensities; and a unit for determining a processed amount of the film by using a pattern of zero-cross points of the differential values of intensities of the received interference light for a second wavelength among the received interference lights of the multiple wavelengths.
    Type: Application
    Filed: June 7, 2007
    Publication date: October 4, 2007
    Inventors: Tatehito Usui, Takashi Fujii, Motohiko Yoshigai, Tetsunori Kaji
  • Patent number: 7230720
    Abstract: A standard pattern of a differential value of an interference light is set with respect to a predetermined film thickness of a first member to be processed. The standard pattern uses a wavelength as a parameter. Then, an intensity of an interference light of a second member to be processed, composed just like the first member, is measured with respect to each of a plurality of wavelengths so as to obtain a real pattern of an differential value of the measured interference light intensity. The real pattern also uses a wavelength as a parameter. Then, the film thickness of the second member is obtained according to the standard pattern and the real pattern of the differential value.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: June 12, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Tatehito Usui, Takashi Fujii, Motohiko Yoshigai, Tetsunori Kaji
  • Patent number: 7126697
    Abstract: Standard patterns of differential values of interference light that correspond to a predetermined step height of the first material being processed and standard patterns of differential values of interference light that correspond to a predetermined remaining mask layer thickness of the material are set. These standard patterns use wavelengths as parameters. Then, the intensities of interference light of multiple wavelengths are measured for a second material that has the same structure as the first material. Actual patterns with wavelength as parameter are determined from differential values of the measured interference light intensities. Based on the standard patterns and the actual patterns of the differential values, the step height and the remaining mask layer thickness of the second material are determined.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: October 24, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Tatehito Usui, Takashi Fujii, Motohiko Yoshigai, Tetsunori Kaji, Hideyuki Yamamoto
  • Publication number: 20060157449
    Abstract: In an oxide film etching process, a plasma having a suitable ratio of CF3, CF2, CF, and F is necessary, and there is a problem in that the etching characteristic fluctuates in accordance with a temperature fluctuation of the etching chamber. Using a UHF type ECR plasma etching apparatus having a low electron temperature, a suitable dissociation can be obtained, and by maintaining the temperature of a side wall of the etching chamber in a range from 10° C. and 120° C., a stable etching characteristic can be obtained. Since oxide film etching using a low electron temperature and a high density plasma can be obtained, an etching result having a superior characteristic can be obtained, and, also, since the side wall temperature adjustment range is low, a simplified apparatus structure and a heat resistant performance countermeasure can be obtained easily.
    Type: Application
    Filed: February 7, 2006
    Publication date: July 20, 2006
    Inventors: Kazue Takahashi, Toshio Masuda, Tetsunori Kaji, Ken'etsu Yokogawa
  • Publication number: 20060144518
    Abstract: A plasma processing apparatus includes a vacuum processing chamber having a pair of opposing electrodes for plasma generation, one electrode serving as a sample table for a sample including an insulator film. An electrostatic adsorption film is arranged at the sample table electrode to supply a thermal conductive gas between the film and the sample rear surface. A pressure reducing element is also provided. In addition, arrangements are provided to set a gas pressure within said vacuum processing chamber to 0.5 to 4.0 Pa and to apply a high frequency power of 30 MHz to 200 MHz between the electrodes. An electrode cover is disposed at the other electrode, and a clearance between the electrodes is 30 mm to 100 mm.
    Type: Application
    Filed: March 3, 2006
    Publication date: July 6, 2006
    Inventors: Tetsunori Kaji, Shinichi Tachi, Toru Otsubo, Katsuya Watanabe, Katsuhiko Mitani, Junichi Tanaka
  • Publication number: 20060132798
    Abstract: Standard patterns of differential values of interference light that correspond to a predetermined step height of the first material being processed and standard patterns of differential values of interference light that correspond to a predetermined remaining mask layer thickness of the material are set. These standard patterns use wavelengths as parameters. Then, the intensities of interference light of multiple wavelengths are measured for a second material that has the same structure as the first material. Actual patterns with wavelength as parameter are determined from differential values of the measured interference light intensities. Based on the standard patterns and the actual patterns of the differential values, the step height and the remaining mask layer thickness of the second material are determined.
    Type: Application
    Filed: January 27, 2006
    Publication date: June 22, 2006
    Inventors: Tatehito Usui, Takashi Fujii, Motohiko Yoshigai, Tetsunori Kaji, Hideyuki Yamamoto
  • Patent number: 7048869
    Abstract: In an oxide film etching process, a plasma having a suitable ratio of CF3, CF2, CF, F is necessary, and there is a problem in that the etching characteristic fluctuates with a temperature fluctuation of the etching chamber. Using a UHF type ECR plasma etching apparatus having a low electron temperature, a suitable dissociation can be obtained, and by maintaining the temperature of a side wall from 10° C. and 120° C., a stable etching characteristic can be obtained. Since oxide film etching using a low electron temperature and a high density plasma can be obtained, an etching result having a superior characteristic can be obtained, and, also, since the side wall temperature adjustment range is low, a simplified apparatus structure and a heat resistant performance countermeasure can be obtained easily.
    Type: Grant
    Filed: October 8, 1999
    Date of Patent: May 23, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Kazue Takahashi, Toshio Masuda, Tetsunori Kaji, Ken'etsu Yokogawa
  • Patent number: 7009715
    Abstract: Standard patterns of differential values of interference light that correspond to a predetermined step height of the first material being processed and standard patterns of differential values of interference light that correspond to a predetermined remaining mask layer thickness of the material are set. These standard patterns use wavelengths as parameters. Then, the intensities of interference light of multiple wavelengths are measured for a second material that has the same structure as the first material. Actual patterns with wavelength as parameter are determined from differential values of the measured interference light intensities. Based on the standard patterns and the actual patterns of the differential values, the step height and the remaining mask layer thickness of the second material are determined.
    Type: Grant
    Filed: November 2, 2004
    Date of Patent: March 7, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Tatehito Usui, Takashi Fujii, Motohiko Yoshigai, Tetsunori Kaji, Hideyuki Yamamoto
  • Publication number: 20060039008
    Abstract: A standard pattern of a differential value of an interference light is set with respect to a predetermined film thickness of a first member to be processed. The standard pattern uses a wavelength as a parameter. Then, an intensity of an interference light of a second member to be processed, composed just like the first member, is measured with respect to each of a plurality of wavelengths so as to obtain a real pattern of an differential value of the measured interference light intensity. The real pattern also uses a wavelength as a parameter. Then, the film thickness of the second member is obtained according to the standard pattern and the real pattern of the differential value.
    Type: Application
    Filed: October 25, 2005
    Publication date: February 23, 2006
    Inventors: Tatehito Usui, Takashi Fujii, Motohiko Yoshigai, Tetsunori Kaji
  • Patent number: 6979168
    Abstract: Bays 100, 200, 300 . . . are connected to an inter-bay transfer line 400 via bay stockers 130, 230, 330 . . . , respectively. The bay 100 is, in this embodiment, composed of a single wafer transfer line 120 having a looped planar shape and processing equipments 101–106 arranged side by side along the longitudinal transfer direction of the transfer line (direction crossing the transfer direction of inter-bay transfer line 400). Processing equipments 101–103 are arranged side by side along one side of the transfer line 120, and the remaining processing equipments 104–106 are arranged side by side along the other side of the transfer line 120. The processing equipments 101–106 are equipped with transfer robots 11–16, respectively. Moreover, processing equipments 101–106 are each equipped with a chamber (not shown) for processing wafers W one by one (single wafer processing chamber).
    Type: Grant
    Filed: August 14, 2002
    Date of Patent: December 27, 2005
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yoichi Uchimaki, Yuko Egawa, Tetsunori Kaji
  • Patent number: 6961131
    Abstract: A standard pattern of a differential value of an interference light is set with respect to a predetermined film thickness of a first member to be processed. The standard pattern uses a wavelength as a parameter. Then, an intensity of an interference light of a second member to be processed, composed just like the first member, is measured with respect to each of a plurality of wavelengths so as to obtain a real pattern of an differential value of the measured interference light intensity. The real pattern also uses a wavelength as a parameter. Then, the film thickness of the second member is obtained according to the standard pattern and the real pattern of the differential value.
    Type: Grant
    Filed: August 16, 2004
    Date of Patent: November 1, 2005
    Assignee: Opnext Japan, Inc.
    Inventors: Tatehito Usui, Takashi Fujii, Motohiko Yoshigai, Tetsunori Kaji
  • Publication number: 20050236109
    Abstract: A plasma processing apparatus includes a vacuum processing chamber, a plasma generating unit having a first power source, a gas supply unit, a lower electrode having a sample table surface for holding a sample in the vacuum processing chamber, and a vacuum pumping unit. The apparatus further includes a plate disposed at a position opposed to the sample table surface, a disc electricity conductor disposed in contact with the plate, a second power source for applying an RF frequency bias power to the disc electricity conductor, and a unit for controlling a temperature of the plate to a predetermined value. The plate is made of silicon or carbon at high purity, and the disc electricity conductor and the plate have a plurality of holes for introducing processing gas from the gas supply unit into the vacuum processing chamber.
    Type: Application
    Filed: June 21, 2005
    Publication date: October 27, 2005
    Inventors: Toshio Masuda, Kazue Takahashi, Mitsuru Suehiro, Tetsunori Kaji, Saburo Kanai
  • Publication number: 20050155952
    Abstract: A plasma processing method using a spectroscopic processing unit which includes separating spectrally plasma radiation emitted from a vacuum process chamber into component spectra, converting the component spectra into a time series of analogue electric signals composed of different wavelength components at a predetermined period, adding together analogue signals of the different wavelength components, converting a plurality of added signals into digital quantities on a predetermined-period basis, digitally adding together the plurality of added and converted signals a plural number of times on a plural-signal basis, determining discriminatively an end point of a predetermined plasma process on the basis of a signal resulting from the digital addition step, and terminating the predetermined plasma process.
    Type: Application
    Filed: March 10, 2005
    Publication date: July 21, 2005
    Inventors: Tetsunori Kaji, Shizuaki Kimura, Tatehito Usui, Takashi Fujii
  • Patent number: 6902683
    Abstract: A method of plasma-processing is provided which includes placing a sample on one of electrodes provided in a vacuum processing chamber and holding the sample onto the electrodes by an electrostatic attracting force. A processing gas is introduced into an environment in which said sample is placed, and the environment is evacuated to a pressure condition for processing said sample. The processing gas is then formed into a plasma under the pressure condition, the sample is processed by the plasma, and a pulse bias voltage having a pulse cycle of 0.1 ?m to 10 ?m is applied to the sample.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: June 7, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Tetsunori Kaji, Shinichi Tachi, Toru Otsubo, Katsuya Watanabe, Katsuhiko Mitani, Junichi Tanaka
  • Patent number: 6903826
    Abstract: Standard patterns of differential values of interference light that correspond to a predetermined step height of the first material being processed and standard patterns of differential values of interference light that correspond to a predetermined remaining mask layer thickness of the material are set. These standard patterns use wavelengths as parameters. Then, the intensities of interference light of multiple wavelengths are measured for a second material that has the same structure as the first material. Actual patterns with wavelength as parameter are determined from differential values of the measured interference light intensities. Based on the standard patterns and the actual patterns of the differential values, the step height and the remaining mask layer thickness of the second material are determined.
    Type: Grant
    Filed: September 6, 2001
    Date of Patent: June 7, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Tatehito Usui, Takashi Fujii, Motohiko Yoshigai, Tetsunori Kaji, Hideyuki Yamamoto
  • Patent number: 6890771
    Abstract: A plasma processing method using a spectroscopic processing unit. The method includes separating spectrally plasma radiation emitted from a vacuum process chamber into component spectra, converting the component spectra into a time series of analogue electric signals composed of different wavelength components at a predetermined period, adding together analogue signals of the different wavelength components, converting a plurality of added signals into digital quantities on a predetermined-period basis, digitally adding together the plurality of added and converted signals a plural number of times on a plural-signal basis, determining discriminatively an end point of a predetermined plasma process on the basis of a signal resulting from the digital addition, and terminating the predetermined plasma process.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: May 10, 2005
    Assignees: Hitachi, Ltd., Hitachi High-Technologies Corporation
    Inventors: Tetsunori Kaji, Shizuaki Kimura, Tatehito Usui, Takashi Fujii
  • Publication number: 20050082006
    Abstract: A plasma processing apparatus includes a vacuum processing chamber having a pair of opposing electrodes for plasma generation, one electrode serving as a sample table for a sample including an insulator film. An electrostatic adsorption film is arranged at the sample table electrode to supply a thermal conductive gas between the film and the sample rear surface. A pressure reducing element is also provided. In addition, arrangements are provided to set a gas pressure within said vacuum processing chamber to 0.5 to 4.0 Pa and to apply a high frequency power of 30 MHz to 200 MHz between the electrodes. An electrode cover s disposed at the other electrode, and a clearance between the electrodes is 30 mm to 100 mm.
    Type: Application
    Filed: November 10, 2004
    Publication date: April 21, 2005
    Inventors: Tetsunori Kaji, Shinichi Tachi, Toru Otsubo, Katsuya Watanabe, Katsuhiko Mitani, Junichi Tanaka