Patents by Inventor Tetsuro Harada
Tetsuro Harada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240039515Abstract: A radio frequency module includes a module substrate, a plurality of passive components disposed on a main surface of the module substrate, and a filter component disposed over the plurality of passive components, wherein the filter component includes series arm resonators that constitute an acoustic wave filter, the series arm resonator is connected between the series arm resonators, and a region of the filter component formed with the series arm resonator does not overlap the plurality of passive components and at least a part of the other region of the filter component overlaps at least a part of each of the plurality of passive components in a plan view of the module substrate.Type: ApplicationFiled: June 13, 2023Publication date: February 1, 2024Inventors: Yuji TAKEMATSU, Tetsuro HARADA, Hiroaki TAKAOKA, Hiroki DEGUCHI
-
Publication number: 20230319984Abstract: Detection accuracy is improved with a reduced size. A radio-frequency module includes an antenna terminal, a signal input terminal, a signal output terminal, a mounting substrate, a chip inductor, and a directional coupler. The mounting substrate has a first major surface and a second major surface opposite to each other. The chip inductor is mounted on the first major surface of the mounting substrate. The chip inductor is provided in at least one of a transmitting path between the antenna terminal and the signal input terminal and a receiving path between the antenna terminal and the signal output terminal. The directional coupler is mounted on the second major surface of the mounting substrate, and at least part of the directional coupler is provided in the transmitting path.Type: ApplicationFiled: June 9, 2023Publication date: October 5, 2023Inventors: Tetsuro HARADA, Dai NAKAGAWA, Yuji TAKEMATSU, Hiroaki TAKAOKA, Takahisa TOYOMURA
-
Publication number: 20230103162Abstract: A high frequency module includes a mounting substrate, an inductor, and a plurality of electronic components. The inductor is arranged on the mounting substrate. The inductor is arranged in an inside of the mounting substrate and has a winding portion formed by winding a conductor portion a plurality of times in a thickness direction of the mounting substrate. A first ground layer is formed in a region that is on an inner side of an outer edge of the winding portion in plan view of the mounting substrate, and the first ground layer is arranged closest to the winding portion in the thickness direction of the mounting substrate among ground layers formed in the region in a plurality of ground layers. The first ground layer is overlapped with an inner region but is not overlapped with at least part of the winding portion in plan view of the mounting substrate.Type: ApplicationFiled: August 4, 2022Publication date: March 30, 2023Inventor: Tetsuro HARADA
-
Patent number: 11476226Abstract: A radio-frequency module includes: a transmitting circuit disposed on a mounting substrate to process a radio-frequency signal input from a transmission terminal and to output a resultant signal to a common terminal; a receiving circuit disposed on the mounting substrate to process a radio-frequency signal input from the common terminal and to output a resultant signal to a reception terminal; a first inductor included in a first transmitting circuit; and a bonding wire connected to the ground and bridging over the first inductor.Type: GrantFiled: December 26, 2019Date of Patent: October 18, 2022Assignee: MURATA MANUFACTURING CO., LTD.Inventors: Takanori Uejima, Yuji Takematsu, Naoya Matsumoto, Shou Matsumoto, Tetsuro Harada, Dai Nakagawa, Yutaka Sasaki, Yuuki Fukuda
-
Patent number: 11309925Abstract: A radio-frequency module includes a mounting substrate having a first main surface and a second main surface on opposite sides of the mounting substrate; an external connection terminal arranged on the first main surface; and a first transmission power amplifier arranged on the first main surface. The first transmission power amplifier includes an amplifier first main surface closest to the first main surface, an amplifier second main surface that faces away from the amplifier first main surface, a first input-output electrode arranged on the amplifier first main surface and through which a radio-frequency signal input into the first transmission power amplifier or a radio-frequency signal output from the first transmission power amplifier is transmitted, and a first ground electrode arranged on the amplifier second main surface.Type: GrantFiled: April 7, 2021Date of Patent: April 19, 2022Assignee: MURATA MANUFACTURING CO., LTD.Inventors: Sho Matsumoto, Takanori Uejima, Yuji Takematsu, Tetsuro Harada, Dai Nakagawa, Naoya Matsumoto, Yutaka Sasaki, Yuuki Fukuda
-
Patent number: 11251829Abstract: A radio frequency module is provided. A matching circuit includes an inductor which is connected in series to the power amplifier and is formed in a substrate. The substrate includes a ground layer, a low permittivity portion, and a high permittivity portion. The ground layer at least partially overlaps with a first input terminal of the low-noise amplifier in a plan view from a thickness direction of the substrate. The low permittivity portion at least partially overlaps with the first input terminal in a plan view from the thickness direction, and is provided between the first input terminal and the ground layer. The high permittivity portion is in contact with the inductor and has the permittivity greater than the permittivity of the low permittivity portion.Type: GrantFiled: September 16, 2020Date of Patent: February 15, 2022Assignee: MURATA MANUFACTURING CO., LTD.Inventor: Tetsuro Harada
-
Publication number: 20210226652Abstract: A radio-frequency module includes a mounting substrate having a first main surface and a second main surface on opposite sides of the mounting substrate; an external connection terminal arranged on the first main surface; and a first transmission power amplifier arranged on the first main surface. The first transmission power amplifier includes an amplifier first main surface closest to the first main surface, an amplifier second main surface that faces away from the amplifier first main surface, a first input-output electrode arranged on the amplifier first main surface and through which a radio-frequency signal input into the first transmission power amplifier or a radio-frequency signal output from the first transmission power amplifier is transmitted, and a first ground electrode arranged on the amplifier second main surface.Type: ApplicationFiled: April 7, 2021Publication date: July 22, 2021Applicant: Murata Manufacturing Co., Ltd.Inventors: Sho MATSUMOTO, Takanori UEJIMA, Yuji TAKEMATSU, Tetsuro HARADA, Dai NAKAGAWA, Naoya MATSUMOTO, Yutaka SASAKI, Yuuki FUKUDA
-
Publication number: 20210219419Abstract: A radio frequency module includes: a first mounting board having a first principal surface and a second principal surface; a second mounting board having a third principal surface facing the second principal surface and a fourth principal surface; a transmission filter having a first mounting surface facing the second principal surface and a first top surface; and a reception filter having a second mounting surface facing the third principal surface and a second top surface; wherein the transmission and reception filters overlap at least partially in a plan view of the first and second mounting boards, an output terminal of the transmission filter is arranged on the first top surface, an input terminal of the reception filter is arranged on the second top surface, and the output and input terminals are connected by a conductive member not routed through the first mounting board or the second mounting board.Type: ApplicationFiled: March 30, 2021Publication date: July 15, 2021Applicant: Murata Manufacturing Co., Ltd.Inventors: Yuji TAKEMATSU, Takanori UEJIMA, Sho MATSUMOTO, Tetsuro HARADA, Dai NAKAGAWA, Naoya MATSUMOTO, Yutaka SASAKI, Yuuki FUKUDA
-
Patent number: 10971466Abstract: A high frequency module includes a transmission power amplifier, a bump electrode connected to the transmission power amplifier, and a mounting board on which the transmission power amplifier is mounted, wherein the mounting board includes a via conductor having an elongated shape in the plan view of the mounting board, a board main part placed outside the via conductor, and an insulating part placed inside the via conductor, and the bump electrode and the via conductor are connected while at least partially overlapping each other in the foregoing plan view, and the board main part and the insulating part are each composed of an insulating material of the same kind.Type: GrantFiled: August 7, 2019Date of Patent: April 6, 2021Assignee: MURATA MANUFACTURING CO., LTD.Inventors: Katsunari Nakazawa, Takanori Uejima, Motoji Tsuda, Yuji Takematsu, Dai Nakagawa, Tetsuro Harada, Masahide Takebe, Naoya Matsumoto, Yoshiaki Sukemori, Mitsunori Samata, Yutaka Sasaki, Yuuki Fukuda
-
Patent number: 10964657Abstract: A radio-frequency module includes: a transmission power amplifier that includes first and second amplification transistors that are cascade connected to each other; and a mounting substrate that has first and second main surface that face each other, the transmission power amplifier being mounted on the first main surface. The first amplification transistor is arranged in a final stage and has a first emitter terminal. The second amplification transistor is arranged in a stage preceding the first amplification transistor and has a second emitter terminal. The mounting substrate has first to fourth ground electrode layers in order of proximity to the first main surface. The first emitter terminal and the second emitter terminal are not electrically connected to each other via an electrode on the first main surface and are not electrically connected to each other via the first ground electrode layer.Type: GrantFiled: July 16, 2019Date of Patent: March 30, 2021Assignee: MURATA MANUFACTURING CO.. LTD.Inventors: Katsunari Nakazawa, Takanori Uejima, Motoji Tsuda, Yuji Takematsu, Dai Nakagawa, Tetsuro Harada, Masahide Takebe, Naoya Matsumoto, Yoshiaki Sukemori, Mitsunori Samata, Yutaka Sasaki, Yuki Fukuda
-
Patent number: 10950569Abstract: A high frequency module includes a transmission power amplifier, a bump electrode connected to a principal surface of the transmission power amplifier and having an elongated shape in a plan view of the principal surface, and a mounting board on which the transmission power amplifier is mounted, wherein the mounting board includes a via conductor having an elongated shape in the plan view, the length direction of the bump electrode and the length direction of the via conductor are aligned in the plan view, and the bump electrode and the via conductor are connected in an overlapping area where the bump electrode and the via conductor overlap at least partially in the plan view, and the overlapping area is an area elongated in the length direction.Type: GrantFiled: July 15, 2019Date of Patent: March 16, 2021Assignee: MURATA MANUFACTURING CO., LTD.Inventors: Katsunari Nakazawa, Takanori Uejima, Motoji Tsuda, Yuji Takematsu, Dai Nakagawa, Tetsuro Harada, Masahide Takebe, Naoya Matsumoto, Yoshiaki Sukemori, Mitsunori Samata, Yutaka Sasaki, Yuki Fukuda
-
Publication number: 20210006283Abstract: A radio frequency module is provided. A matching circuit includes an inductor which is connected in series to the power amplifier and is formed in a substrate. The substrate includes a ground layer, a low permittivity portion, and a high permittivity portion. The ground layer at least partially overlaps with a first input terminal of the low-noise amplifier in a plan view from a thickness direction of the substrate. The low permittivity portion at least partially overlaps with the first input terminal in a plan view from the thickness direction, and is provided between the first input terminal and the ground layer. The high permittivity portion is in contact with the inductor and has the permittivity greater than the permittivity of the low permittivity portion.Type: ApplicationFiled: September 16, 2020Publication date: January 7, 2021Inventor: Tetsuro HARADA
-
Patent number: 10715186Abstract: In a high frequency module, a first band processing circuit, a second band processing circuit, and a third band processing circuit. The first band processing circuit is used at the same time as the third band processing circuit (D3) when wireless communication is performed. A frequency of a harmonic of a first transmission signal of the first band processing circuit is included in a frequency band of a third reception signal of the third band processing circuit. The second band processing circuit is not used at the same time as the first band processing circuit and the third band processing circuit (D3) when wireless communication is performed and is disposed between the first band processing circuit and the third band processing circuit in a plan view of the substrate.Type: GrantFiled: March 26, 2019Date of Patent: July 14, 2020Assignee: MURATA MANUFACTURING CO., LTD.Inventor: Tetsuro Harada
-
Publication number: 20200211998Abstract: A radio-frequency module includes: a transmitting circuit disposed on a mounting substrate to process a radio-frequency signal input from a transmission terminal and to output a resultant signal to a common terminal; a receiving circuit disposed on the mounting substrate to process a radio-frequency signal input from the common terminal and to output a resultant signal to a reception terminal; a first inductor included in a first transmitting circuit; and a bonding wire connected to the ground and bridging over the first inductor.Type: ApplicationFiled: December 26, 2019Publication date: July 2, 2020Inventors: Takanori UEJIMA, Yuji TAKEMATSU, Naoya MATSUMOTO, Shou MATSUMOTO, Tetsuro HARADA, Dai NAKAGAWA, Yutaka SASAKI, Yuuki FUKUDA
-
Publication number: 20200051942Abstract: A radio-frequency module includes: a transmission power amplifier that includes first and second amplification transistors that are cascade connected to each other; and a mounting substrate that has first and second main surface that face each other, the transmission power amplifier being mounted on the first main surface. The first amplification transistor is arranged in a final stage and has a first emitter terminal. The second amplification transistor is arranged in a stage preceding the first amplification transistor and has a second emitter terminal. The mounting substrate has first to fourth ground electrode layers in order of proximity to the first main surface. The first emitter terminal and the second emitter terminal are not electrically connected to each other via an electrode on the first main surface and are not electrically connected to each other via the first ground electrode layer.Type: ApplicationFiled: July 16, 2019Publication date: February 13, 2020Inventors: Katsunari NAKAZAWA, Takanori UEJIMA, Motoji TSUDA, Yuji TAKEMATSU, Dai NAKAGAWA, Tetsuro HARADA, Masahide TAKEBE, Naoya MATSUMOTO, Yoshiaki SUKEMORI, Mitsunori SAMATA, Yutaka SASAKI, Yuki FUKUDA
-
Publication number: 20200051941Abstract: A high frequency module includes a transmission power amplifier, a bump electrode connected to a principal surface of the transmission power amplifier and having an elongated shape in a plan view of the principal surface, and a mounting board on which the transmission power amplifier is mounted, wherein the mounting board includes a via conductor having an elongated shape in the plan view, the length direction of the bump electrode and the length direction of the via conductor are aligned in the plan view, and the bump electrode and the via conductor are connected in an overlapping area where the bump electrode and the via conductor overlap at least partially in the plan view, and the overlapping area is an area elongated in the length direction.Type: ApplicationFiled: July 15, 2019Publication date: February 13, 2020Inventors: Katsunari NAKAZAWA, Takanori UEJIMA, Motoji TSUDA, Yuji TAKEMATSU, Dai NAKAGAWA, Tetsuro HARADA, Masahide TAKEBE, Naoya MATSUMOTO, Yoshiaki SUKEMORI, Mitsunori SAMATA, Yutaka SASAKI, Yuki FUKUDA
-
Publication number: 20200051943Abstract: A high frequency module includes a transmission power amplifier, a bump electrode connected to the transmission power amplifier, and a mounting board on which the transmission power amplifier is mounted, wherein the mounting board includes a via conductor having an elongated shape in the plan view of the mounting board, a board main part placed outside the via conductor, and an insulating part placed inside the via conductor, and the bump electrode and the via conductor are connected while at least partially overlapping each other in the foregoing plan view, and the board main part and the insulating part are each composed of an insulating material of the same kind.Type: ApplicationFiled: August 7, 2019Publication date: February 13, 2020Inventors: Katsunari NAKAZAWA, Takanori UEJIMA, Motoji TSUDA, Yuji TAKEMATSU, Dai NAKAGAWA, Tetsuro HARADA, Masahide TAKEBE, Naoya MATSUMOTO, Yoshiaki SUKEMORI, Mitsunori SAMATA, Yutaka SASAKI, Yuuki FUKUDA
-
Publication number: 20190222237Abstract: In a high frequency module, a first band processing circuit, a second band processing circuit, and a third band processing circuit. The first band processing circuit is used at the same time as the third band processing circuit (D3) when wireless communication is performed. A frequency of a harmonic of a first transmission signal of the first band processing circuit is included in a frequency band of a third reception signal of the third band processing circuit. The second band processing circuit is not used at the same time as the first band processing circuit and the third band processing circuit (D3) when wireless communication is performed and is disposed between the first band processing circuit and the third band processing circuit in a plan view of the substrate.Type: ApplicationFiled: March 26, 2019Publication date: July 18, 2019Inventor: Tetsuro HARADA
-
Patent number: 10348268Abstract: A demultiplexing circuit (10) includes a band switch (20) and a first communication band phase adjustment circuit (30). The band switch (20) includes a shared terminal (P20) connected to a shared connection end (110), a first selection target terminal (P21) connected to a second signal end (122), and a second selection target terminal (P22) connected to a third signal end (123). In the band switch (20), the first selection target terminal (P21) and the second selection target terminal (P22) are selectively connected to the shared terminal (P20) in response to the communication band to be transmitted. The first communication band phase adjustment circuit (30) is connected between a first signal end (121) and a predetermined position in a transmission path where the shared connection end (110) and the shared terminal (P20) are connected.Type: GrantFiled: December 21, 2017Date of Patent: July 9, 2019Assignee: MURATA MANUFACTURING CO., LTD.Inventor: Tetsuro Harada
-
Publication number: 20180167049Abstract: A demultiplexing circuit (10) includes a band switch (20) and a first communication band phase adjustment circuit (30). The band switch (20) includes a shared terminal (P20) connected to a shared connection end (110), a first selection target terminal (P21) connected to a second signal end (122), and a second selection target terminal (P22) connected to a third signal end (123). In the band switch (20), the first selection target terminal (P21) and the second selection target terminal (P22) are selectively connected to the shared terminal (P20) in response to the communication band to be transmitted. The first communication band phase adjustment circuit (30) is connected between a first signal end (121) and a predetermined position in a transmission path where the shared connection end (110) and the shared terminal (P20) are connected.Type: ApplicationFiled: December 21, 2017Publication date: June 14, 2018Inventor: Tetsuro HARADA