Patents by Inventor Theresa Chang
Theresa Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230357541Abstract: A method of forming an antimicrobial film, including providing a substrate with a polymer coating disposed thereon, the polymer coating including: an antimicrobial material, an inner surface contacting the substrate, and an outer surface opposite the inner surface; and extracting ions from the antimicrobial material toward the outer surface, such that the outer surface interacts with surface microorganisms. A composition, including a polymer; an antimicrobial material; and at least one of an organic solvent and an additive. The antimicrobial material comprises at least one of copper-containing glass particles, copper oxide particles, copper metal particles, copper salts, copper coordination complexes, cuprite crystals, and a combination thereof. Further, the additive can be selected to increase the oxidation resistance of the antimicrobial material.Type: ApplicationFiled: July 6, 2023Publication date: November 9, 2023Inventors: Andrew Charles Antony, Theresa Chang, Sushmit Sunil Kumar Goyal, Shrisudersan Jayaraman, Rui Qi, Vinalia Tjong, Shu Yuan
-
Patent number: 11795102Abstract: A coated glass article and of a system and method for forming a coated glass article are provided. The process includes applying a first coating precursor material to the first surface of the glass article and supporting the glass article via a gas bearing. The process includes heating the glass article and the coating precursor material to above a glass transition temperature of the glass article while the glass article is supported by the gas bearing such that during heating, a property of the first coating precursor material changes forming a coating layer on the first surface of the glass article from the first precursor material. The high temperature and/or non-contact coating formation may form a coating layer with one or more new physical properties, such as a deep diffusion layer within the glass, and may form highly consistent coatings on multiple sides of the glass.Type: GrantFiled: January 19, 2017Date of Patent: October 24, 2023Assignee: Corning IncorporatedInventors: Theresa Chang, Ming-Huang Huang, Linda Gaskill, Peter Joseph Lezzi, Kevin Lee Wasson
-
Patent number: 11786441Abstract: Coated pharmaceutical packages are disclosed. The coated pharmaceutical packages may Include a glass body formed from borosilicate glass that meets Type 1 criteria according to USP <660> or alkali aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to the ISO 720-1985 testing standard. A low-friction coating comprising a polymer may be positioned on a portion of the exterior surface. A coefficient of friction of an abraded area of the portion of the exterior surface with the low-friction coating may be less than 0.7 after exposure to a temperature of 260° C. for 30 minutes and abrasion under a load of at least 10 N and does not have observable damage. A retained strength of the coated glass article in horizontal compression does not decrease by more than 20% after the temperature exposure and the abrasion.Type: GrantFiled: June 30, 2018Date of Patent: October 17, 2023Assignee: CORNING INCORPORATEDInventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
-
Patent number: 11752730Abstract: A stack assembly is provided that includes a glass layer having a thickness, a first and second primary surface and a compressive stress region extending from the second primary surface to a first depth; and a second layer coupled to the second primary surface. The glass layer is characterized by: an absence of failure when the layer is held at a bend radius from about 3 to 20 mm, a puncture resistance of greater than about 1.5 kgf when the second primary surface is supported by (i) an ˜25 ?m thick PSA and (ii) an ˜50 ?m thick PET layer, and the first primary surface is loaded with a stainless steel pin having a flat bottom with a 200 ?m diameter, a pencil hardness of at least 8H, and a neutral axis within the glass layer located between the second primary surface and half of the first thickness.Type: GrantFiled: August 11, 2015Date of Patent: September 12, 2023Assignee: Corning IncorporatedInventors: Theresa Chang, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, James Ernest Webb
-
Patent number: 11745471Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress GI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.Type: GrantFiled: June 13, 2022Date of Patent: September 5, 2023Assignee: Corning IncorporatedInventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
-
Patent number: 11737951Abstract: Coated pharmaceutical packages may comprise a glass body formed from a borosilicate glass composition having a Type 1 chemical durability according to USP 660, the glass body having an interior surface and an exterior surface and a wall extending therebetween. A low-friction thermally stable coating having a thickness of ?1 ?m may be positioned on at least a portion of the exterior surface. The low-friction coating may comprise a silane. The portion of the exterior surface of the coated pharmaceutical package may have a coefficient of friction that is at least 20% less than an uncoated pharmaceutical package formed from the same borosilicate glass composition.Type: GrantFiled: March 26, 2021Date of Patent: August 29, 2023Assignee: CORNING INCORPORATEDInventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
-
Publication number: 20230132277Abstract: Disclosed herein are delamination resistant glass pharmaceutical containers which may include a glass body having a Class HGA1 hydrolytic resistance when tested according to the ISO 720:1985 testing standard. The glass body may have an interior surface and an exterior surface. The interior surface of the glass body does not comprise a boron-rich layer when the glass body is in an as-formed condition. A heat-tolerant coating may be bonded to at least a portion of the exterior surface of the glass body. The heat-tolerant coating may have a coefficient of friction of less than about 0.7 and is thermally stable at a temperature of at least 250° C. for 30 minutes.Type: ApplicationFiled: December 22, 2022Publication date: April 27, 2023Applicant: CORNING INCORPORATEDInventors: Kaveh Adib, Dana Craig Bookbinder, Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Andrei Gennadyevich Fadeev, James Patrick Hamilton, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Chandan Kumar Saha, Robert Anthony Schaut, Susan Lee Schiefelbein, Christopher Lee Timmons
-
Patent number: 11608290Abstract: Disclosed herein are delamination resistant glass pharmaceutical containers which may include a glass body having a Class HGA1 hydrolytic resistance when tested according to the ISO 720:1985 testing standard. The glass body may have an interior surface and an exterior surface. The interior surface of the glass body does not comprise a boron-rich layer when the glass body is in an as-formed condition. A heat-tolerant coating may be bonded to at least a portion of the exterior surface of the glass body. The heat-tolerant coating may have a coefficient of friction of less than about 0.7 and is thermally stable at a temperature of at least 250° C. for 30 minutes.Type: GrantFiled: March 17, 2019Date of Patent: March 21, 2023Assignee: CORNING INCORPORATEDInventors: Kaveh Adib, Dana Craig Bookbinder, Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Andrei Gennadyevich Fadeev, James Patrick Hamilton, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Chandan Kumar Saha, Robert Anthony Schaut, Susan Lee Schiefelbein, Christopher Lee Timmons
-
Publication number: 20230043558Abstract: Glass articles with coatings are disclosed herein. According to embodiments, a glass article may include a glass body comprising glass and having a first surface and a second surface opposite the first surface, wherein the first surface is an exterior surface of the glass body. A coating disposed on at least a portion of the exterior surface of the glass body. The coated glass article may have an effective throughput rate greater than or equal to 1.10×RT, wherein RT is the effective throughput rate of an uncoated glass article in units of parts per minute (ppm).Type: ApplicationFiled: October 4, 2022Publication date: February 9, 2023Applicant: CORNING INCORPORATEDInventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky, Kyle Christopher Hoff
-
Patent number: 11554982Abstract: A system and process for forming a curved glass laminate article is provided. The process and system utilizes a separation material, such as solid lubricating material and/or a spray applied separation material that Applicant has determined reduces bending dot formation during co-sagging shaping of glass sheets. The bending dot reduction provided by the separation materials discussed herein is particularly seen when the pair of glass sheets have significantly different thicknesses and/or viscosities from each other.Type: GrantFiled: May 15, 2018Date of Patent: January 17, 2023Assignee: Corning IncorporatedInventors: Douglas Dale Bressler, Theresa Chang, Allan Mark Fredholm, Michele Marie-Louise Fredholm, Louis Mattos, Jr., Jason Scott Stewart
-
Patent number: 11497681Abstract: Glass articles with coatings are disclosed herein. According to embodiments, a glass article may include a glass body comprising glass and having a first surface and a second surface opposite the first surface, wherein the first surface is an exterior surface of the glass body. A coating disposed on at least a portion of the exterior surface of the glass body. The coated glass article may have an effective throughput rate greater than or equal to 1.10×RT, wherein RT is the effective throughput rate of an uncoated glass article in units of parts per minute (ppm).Type: GrantFiled: December 28, 2017Date of Patent: November 15, 2022Assignee: CORNING INCORPORATEDInventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky, Kyle Christopher Hoff
-
Publication number: 20220324202Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress GI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.Type: ApplicationFiled: June 13, 2022Publication date: October 13, 2022Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
-
Publication number: 20220274890Abstract: A cement mixture for applying to a honeycomb body that includes: (i) inorganic ceramic particles; (ii) an inorganic binder; (iii) an organic binder comprising one or more of a hydrophilic polymer and a hydrophilic additive; and (iv) an aqueous liquid vehicle. The cement mixture exhibits a cement viscosity of less than 7000 Pa·s at a shear rate of less than 0.1/sec and greater than 25 Pa·s at a shear rate from 20/sec to 100/sec.Type: ApplicationFiled: August 5, 2020Publication date: September 1, 2022Inventors: Richard Bergman, Theresa Chang, Kunal Upendra Sakekar, Shu Yuan
-
Publication number: 20220234947Abstract: Various embodiments provide an article including a substrate and a coating thereon including a functionalized fluorine containing compound crosslinked with a multifunctional siloxane resin. A method of forming the article includes applying a multifunctional siloxane resin to a substrate, applying a functionalized fluorine containing compound to the substrate, and annealing the multifunctional siloxane resin and the functionalized fluorine containing compound.Type: ApplicationFiled: May 13, 2020Publication date: July 28, 2022Inventors: Kaveh Adib, Theresa Chang, Sean Patrick Coleman, Jiangwei Fei, Ying Wei, Christine Coulter Wolcott, Shu Yuan, Binwei Zhang, Chunhe Zhang
-
Patent number: 11358372Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress GI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.Type: GrantFiled: October 5, 2020Date of Patent: June 14, 2022Assignee: Corning IncorporatedInventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
-
Publication number: 20220098043Abstract: A method of forming a functionalized device substrate is provided that includes the steps of: forming a conductive layer on a growth substrate; applying a polymeric layer to a device substrate, wherein a coupling agent couples the polymeric layer to the device substrate; coupling the polymeric layer to the conductive layer on the growth substrate; and peeling the growth substrate from the conductive layer.Type: ApplicationFiled: December 9, 2021Publication date: March 31, 2022Inventors: Therese Francoise Arliguie, Theresa Chang, Miriam Marchena Martín-Francés, Prantik Mazumder, Valerio Pruneri, Frederic Christian Wagner
-
Patent number: 11214491Abstract: A method of forming a functionalized device substrate is provided that includes the steps of: forming a graphene layer on a growth substrate; applying a polyimide layer to a glass, glass-ceramic or ceramic substrate, wherein a coupling agent couples the polyimide layer to the said substrate; coupling the polyimide layer to the graphene layer on the growth substrate; and peeling the growth substrate from the graphene layer.Type: GrantFiled: November 16, 2018Date of Patent: January 4, 2022Assignees: Corning Incorporated, ICFO—THE INSTITUTE OF PHOTONIC SCIENCES, INSTITUCIÓ CATALANA DE RECERCA I ESTUDIS AVANÇATS (ICREA)Inventors: Therese Francoise Arliguie, Theresa Chang, Miriam Marchena Martín-Francés, Prantik Mazumder, Valerio Pruneri, Frederic Christian Wagner
-
Patent number: 11123954Abstract: A method of controllably bonding a thin sheet having a thin sheet bonding surface with a carrier having a carrier bonding surface, by depositing a carbonaceous surface modification layer onto at least one of the thin sheet bonding surface and the carrier bonding surface, incorporating polar groups with the surface modification layer, and then bonding the thin sheet bonding surface to the carrier bonding surface via the surface modification layer. The surface modification layer may include a bulk carbonaceous layer having a first polar group concentration and a surface layer having a second polar group concentration, wherein the second polar group concentration is higher than the first polar group concentration. The surface modification layer deposition and the treatment thereof may be performed by plasma polymerization techniques.Type: GrantFiled: March 14, 2018Date of Patent: September 21, 2021Assignee: CORNING INCORPORATEDInventors: Kaveh Adib, Robert Alan Bellman, Dana Craig Bookbinder, Theresa Chang, Shiwen Liu, Robert George Manley, Prantik Mazumder
-
Patent number: 11071689Abstract: Coated pharmaceutical packages are disclosed. The coated pharmaceutical packages may include a glass body formed from one of a borosilicate glass composition that meets Type 1 criteria according to USP <660> or an alkali aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to the ISO 720-1985 testing standard. A low-friction coating may be positioned on at least a portion of the first surface of the glass body the low-friction coating may include a polymer and a coupling agent disposed between the polymer and the first surface of the glass body. A coefficient of friction of the portion of the coated pharmaceutical package with the low-friction coating is at least 20% less than a coefficient of friction of a surface of an uncoated pharmaceutical package formed from the same glass composition.Type: GrantFiled: June 30, 2018Date of Patent: July 27, 2021Assignee: CORNING INCORPORATEDInventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
-
Publication number: 20210212895Abstract: Coated pharmaceutical packages may comprise a glass body formed from a borosilicate glass composition having a Type 1 chemical durability according to USP 660, the glass body having an interior surface and an exterior surface and a wall extending therebetween. A low-friction thermally stable coating having a thickness of ?1 ?m may be positioned on at least a portion of the exterior surface. The low-friction coating may comprise a silane. The portion of the exterior surface of the coated pharmaceutical package may have a coefficient of friction that is at least 20% less than an uncoated pharmaceutical package formed from the same borosilicate glass composition.Type: ApplicationFiled: March 26, 2021Publication date: July 15, 2021Applicant: CORNING INCORPORATEDInventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky