Patents by Inventor Thierry Caillat

Thierry Caillat has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9722163
    Abstract: A thermoelectric power generation device is disclosed using one or more mechanically compliant and thermally and electrically conductive layers at the thermoelectric material interfaces to accommodate high temperature differentials and stresses induced thereby. The compliant material may be metal foam or metal graphite composite (e.g. using nickel) and is particularly beneficial in high temperature thermoelectric generators employing Zintl thermoelectric materials. The compliant material may be disposed between the thermoelectric segments of the device or between a thermoelectric segment and the hot or cold side interconnect of the device.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: August 1, 2017
    Assignee: California Institute of Technology
    Inventors: Samad A. Firdosy, Billy Chun-Yip Li, Vilupanur A. Ravi, Jean-Pierre Fleurial, Thierry Caillat, Harut Anjunyan
  • Publication number: 20170194546
    Abstract: The present invention provides a thermoelectric device. The thermoelectric device includes an interconnect layer, a skutterudite layer, and a metallization stack. The metallization stack, having a diffusion layer, is disposed between and in electrical contact with the interconnect layer and the skutterudite layer of the thermoelectric device. The present invention also provides a method of preparing an SKD thermocouple. The present invention also provides a method of preparing a braze joint.
    Type: Application
    Filed: January 4, 2017
    Publication date: July 6, 2017
    Applicant: California Institute of Technology
    Inventors: Samad A. Fidrosy, Jong-Ah Paik, Kevin L. Smith, Billy Chun-Yip Li, Su C. Chi, Kevin Yu, Jean-Pierre Fleurial, David M. Uhl, Thierry Caillat, George H. Nakasukasa, Vilapanur A. Ravi
  • Publication number: 20170077379
    Abstract: A thermoelectric power generation technique is disclosed using one or more mechanically compliant and thermally and electrically conductive layers at the thermoelectric material interfaces to accommodate high temperature differentials and stresses induced thereby. The compliant material may be metal foam or metal graphite composite (e.g. using nickel) and is particularly beneficial in high temperature thermoelectric generators employing Zintl thermoelectric materials. The compliant material may be disposed between the thermoelectric segments of the device or between a thermoelectric segment and the hot or cold side interconnect of the device.
    Type: Application
    Filed: November 21, 2016
    Publication date: March 16, 2017
    Applicant: California Institute of Technology
    Inventors: Samad A. Firdosy, Billy Chun-Yip Li, Vilupanur A. Ravi, Jean-Pierre Fleurial, Thierry Caillat, Harut Anjunyan
  • Publication number: 20150357541
    Abstract: A thermoelectric power generation device is disclosed using one or more mechanically compliant and thermally and electrically conductive layers at the thermoelectric material interfaces to accommodate high temperature differentials and stresses induced thereby. The compliant material may be metal foam or metal graphite composite (e.g. using nickel) and is particularly beneficial in high temperature thermoelectric generators employing Zintl thermoelectric materials. The compliant material may be disposed between the thermoelectric segments of the device or between a thermoelectric segment and the hot or cold side interconnect of the device.
    Type: Application
    Filed: June 7, 2013
    Publication date: December 10, 2015
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Samad A. Firdosy, Billy Chun-Yip Li, Vilupanur A. Ravi, Jean-Pierre Fleurial, Thierry Caillat, Harut Anjunyan
  • Patent number: 8791353
    Abstract: Alumina as a sublimation suppression barrier for a Zintl thermoelectric material in a thermoelectric power generation device operating at high temperature, e.g. at or above 1000K, is disclosed. The Zintl thermoelectric material may comprise Yb14MnSb11. The alumina may be applied as an adhesive paste dried and cured on a substantially oxide free surface of the Zintl thermoelectric material and polished to a final thickness. The sublimation suppression barrier may be finalized by baking out the alumina layer on the Zintl thermoelectric material until it becomes substantially clogged with ytterbia.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: July 29, 2014
    Assignee: California Institute of Technology
    Inventors: Jong-Ah Paik, Thierry Caillat
  • Publication number: 20120006376
    Abstract: A thermally stable diffusion barrier for bonding skutterudite-based materials with metal contacts is disclosed. The diffusion barrier may be employed to inhibit solid-state diffusion between the metal contacts, e.g. titanium (Ti), nickel (Ni), copper (Cu), palladium (Pd) or other suitable metal electrical contacts, and a skutterudite thermoelectric material including a diffusible element, such as antimony (Sb), phosphorous (P) or arsenic (As), e.g. n-type CoSb3 or p-type CeFe4?xCoxSb12 where the diffusible element is Sb, to slow degradation of the mechanical and electrical characteristics of the device. The diffusion barrier may be employed to bond metal contacts to thermoelectric materials for various power generation applications operating at high temperatures (e.g. 673 K or above). Some exemplary diffusion barrier materials have been identified such as zirconium (Zr), hafnium (Hf), and yttrium (Y).
    Type: Application
    Filed: June 15, 2011
    Publication date: January 12, 2012
    Applicant: California Institute of Technology
    Inventors: JEAN-PIERRE FLEURIAL, Thierry Caillat, Su Chih Chi
  • Publication number: 20100243018
    Abstract: A thermoelectric power generation device using molybdenum metallization to a Zintl thermoelectric material in a thermoelectric power generation device operating at high temperature, e.g. at or above 1000° C., is disclosed. The Zintl thermoelectric material may comprise Yb14MnSb11. A thin molybdenum metallization layer of approximately 5 microns or less may be employed. The thin molybdenum layer may be applied in a foil under high pressure, e.g. 1800 psi, at high temperature, e.g. 1000° C. The metallization layer may then be bonded or brazed to other components, such as heat collectors or current carrying electrodes, of the thermoelectric power generation device.
    Type: Application
    Filed: March 29, 2010
    Publication date: September 30, 2010
    Applicant: California Institute of Technology
    Inventors: Billy Chun-Yip Li, Erik J. Brandon, Vilupanur A. Ravi, Thierry Caillat, Richard C. Ewell, Samad A. Firdosy, Jeff S. Sakamoto
  • Publication number: 20100229910
    Abstract: Alumina as a sublimation suppression barrier for a Zintl thermoelectric material in a thermoelectric power generation device operating at high temperature, e.g. at or above 1000K, is disclosed. The Zintl thermoelectric material may comprise Yb14MnSb11. The alumina may be applied as an adhesive paste dried and cured on a substantially oxide free surface of the Zintl thermoelectric material and polished to a final thickness. The sublimation suppression barrier may be finalized by baking out the alumina layer on the Zintl thermoelectric material until it becomes substantially clogged with ytterbia.
    Type: Application
    Filed: March 12, 2010
    Publication date: September 16, 2010
    Applicant: California Institute of Technology
    Inventors: Jong-Ah Paik, Thierry Caillat
  • Patent number: 7480984
    Abstract: A method of applying a physical barrier to suppress thermal decomposition near a surface of a thermoelectric material including applying a continuous metal foil to a predetermined portion of the surface of the thermoelectric material, physically binding the continuous metal foil to the surface of the thermoelectric material using a binding member, and heating in a predetermined atmosphere the applied and physically bound continuous metal foil and the thermoelectric material to a sufficient temperature in order to promote bonding between the continuous metal foil and the surface of the thermoelectric material. The continuous metal foil forms a physical barrier to enclose a predetermined portion of the surface. Thermal decomposition is suppressed at the surface of the thermoelectric material enclosed by the physical barrier when the thermoelectric element is in operation.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: January 27, 2009
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jeffrey S. Sakamoto, Thierry Caillat, Jean-Pierre Fleurial, G. Jeffrey Snyder
  • Patent number: 6942728
    Abstract: The present invention is embodied in high performance p-type thermoelectric materials having enhanced thermoelectric properties and the methods of preparing such materials. In one aspect of the invention, p-type semiconductors of formula Zn4?xAxSb3?yBy wherein 0?x?4, A is a transition metal, B is a pnicogen, and 0?y?3 are formed for use in manufacturing thermoelectric devices with substantially enhanced operating characteristics and improved efficiency. Two methods of preparing p-type Zn4Sb3 and related alloys of the present invention include a crystal growth method and a powder metallurgy method.
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: September 13, 2005
    Assignee: California Institute of Technology
    Inventors: Thierry Caillat, Alexander Borshchevsky, Jean-Pierre Fleurial
  • Patent number: 6787691
    Abstract: A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: September 7, 2004
    Assignee: California Institute of Technology
    Inventors: Jean-Pierre Fleurial, Margaret A. Ryan, Alex Borshchevsky, Wayne Phillips, Elizabeth A. Kolawa, G. Jeffrey Snyder, Thierry Caillat, Thorsten Kascich, Peter Mueller
  • Patent number: 6673996
    Abstract: A high-efficiency thermoelectric unicouple is used for power generation. The unicouple is formed with a plurality of legs, each leg formed of a plurality of segments. The legs are formed in a way that equalizes certain aspects of the different segments. Different materials are also described.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: January 6, 2004
    Assignee: California Institute of Technology
    Inventors: Thierry Caillat, Andrew Zoltan, Leslie Zoltan, Jeffrey Snyder
  • Patent number: 6660926
    Abstract: A class of thermoelectric compounds based on the skutterudite structure with heavy filling atoms in the empty octants and substituting transition metals and main-group atoms. High Seebeck coefficients and low thermal conductivities are achieved in combination with large electrical conductivities in these filled skutterudites for large ZT values. Substituting and filling methods are disclosed to synthesize skutterudite compositions with desired thermoelectric properties. A melting and/or sintering process in combination with powder metallurgy techniques is used to fabricate these new materials.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: December 9, 2003
    Assignees: General Motors Corporation, California Institute of Technology
    Inventors: Jean-Pierre Fleurial, Alex Borshchevsky, Thierry Caillat, Donald T. Morelli, Gregory P. Meisner
  • Patent number: 6563039
    Abstract: A high-efficiency thermoelectric unicouple is used for power generation. The unicouple is formed with a plurality of legs, each leg formed of a plurality of segments. The legs are formed in a way that equalized certain aspects of the different segments. Different materials are also described.
    Type: Grant
    Filed: January 17, 2001
    Date of Patent: May 13, 2003
    Assignee: California Institute of Technology
    Inventors: Thierry Caillat, Jean-Pierre Fleurial, Alexander Borshchevsky, G. Jeffrey Snyder, Andrew Zoltan, Leslie Zoltan
  • Publication number: 20030066476
    Abstract: The present invention is embodied in high performance p-type thermoelectric materials having enhanced thermoelectric properties and the methods of preparing such materials. In one aspect of the invention, p-type semiconductors of formula Zn4-xAxSb3-yBy wherein 0≦x≦4, A is a transition metal, B is a pnicogen, and 0≦y≦3 are formed for use in manufacturing thermoelectric devices with substantially enhanced operating characteristics and improved efficiency. Two methods of preparing p-type Zn4Sb3 and related alloys of the present invention include a crystal growth method and a powder metallurgy method.
    Type: Application
    Filed: October 1, 2002
    Publication date: April 10, 2003
    Applicant: California Institute of Technology
    Inventors: Thierry Caillat, Alexander Borshchevsky, Jean-Pierre Fleurial
  • Publication number: 20030041892
    Abstract: A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.
    Type: Application
    Filed: May 14, 2002
    Publication date: March 6, 2003
    Applicant: California Institute of Technology
    Inventors: Jean-Pierre Fleurial, Margaret A. Ryan, Alex Borshchevsky, Wayne Phillips, Elizabeth A. Kolawa, G. Jeffrey Snyder, Thierry Caillat, Thorsten Kascich, Peter Mueller
  • Publication number: 20020189661
    Abstract: A high-efficiency thermoelectric unicouple is used for power generation. The unicouple is formed with a plurality of legs, each leg formed of a plurality of segments. The legs are formed in a way that equalizes certain aspects of the different segments. Different materials are also described.
    Type: Application
    Filed: May 1, 2002
    Publication date: December 19, 2002
    Inventors: Thierry Caillat, Andrew Zoltan, Leslie Zoltan, Jeffrey Snyder
  • Publication number: 20020175312
    Abstract: Chevrel phase materials are used as thermoelectric materials. The Chevrel phase materials are formed as units, and the units include voids between the units. Those voids may be filled with filling elements. The filling elements can be large elements such as lead, or smaller elements such as metals. Exemplary metals may include Cu, Ti, and/or Fe. Different Chevrel phase materials are discussed, including Mo based Chevrel phase materials and Re based Chevrel phase materials.
    Type: Application
    Filed: July 11, 2001
    Publication date: November 28, 2002
    Inventors: Jean-Pierre Fleurial, G. Jeffrey Snyder, Alexander Borshchevsky, Thierry Caillat
  • Publication number: 20020176815
    Abstract: A class of thermoelectric compounds based on the skutterudite structure with heavy filling atoms in the empty octants and substituting transition metals and main-group atoms. High Seebeck coefficients and low thermal conductivities are achieved in combination with large electrical conductivities in these filled skutterudites for large ZT values. Substituting and filling methods are disclosed to synthesize skutterudite compositions with desired thermoelectric properties. A melting and/or sintering process in combination with powder metallurgy techniques is used to fabricate these new materials.
    Type: Application
    Filed: November 6, 2001
    Publication date: November 28, 2002
    Applicant: General Motors Corporation, a Delaware corporation
    Inventors: Jean-Pierre Fleurial, Alex Borshchevsky, Thierry Caillat, Donald T. Morelli, Gregory P. Meisner
  • Patent number: 6458319
    Abstract: The present invention is embodied in high performance p-type thermoelectric materials having enhanced thermoelectric properties and the methods of preparing such materials. In one aspect of the invention, p-type semiconductors of formula Zn4−xAxSb3−yBy wherein 0≦x≦4, A is a transition metal, B is a pnicogen, and 0≦y≦3 are formed for use in manufacturing thermoelectric devices with substantially enhanced operating characteristics and improved efficiency. Two methods of preparing p-type Zn4Sb3 and related alloys of the present invention include a crystal growth method and a powder metallurgy method.
    Type: Grant
    Filed: March 18, 1997
    Date of Patent: October 1, 2002
    Assignee: California Institute of Technology
    Inventors: Thierry Caillat, Alexander Borshchevsky, Jean-Pierre Fleurial