Patents by Inventor Thomas Charles Adcock

Thomas Charles Adcock has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11911848
    Abstract: A method of fabricating a component is provided. The method includes depositing particles onto a build platform. The method also includes distributing the particles to form a build layer. The method further includes operating a consolidation device to consolidate a first plurality of particles along a scan path to form a component. The component includes a top surface spaced apart from the build platform and an outer surface. The outer surface extends between the build platform and the top surface, and at least a portion of the outer surface faces a substantially particle-free region of the build platform.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: February 27, 2024
    Assignee: General Electric Company
    Inventors: Michael Evans Graham, Thomas Charles Adcock, John Joseph Madelone, Jr., John Broddus Deaton, Jr.
  • Publication number: 20240051029
    Abstract: An additive manufacturing machine and an energy beam system including an energy beam generator configured to output an energy beam through a first optical element along a first direction is provided. The energy beam system includes an optical translation system positioned to receive the energy beam through a steering optic. The steering optic is positioned within a translator apparatus. The translator apparatus is configured to translate the steering optic along a plane perpendicular to the first direction.
    Type: Application
    Filed: August 15, 2022
    Publication date: February 15, 2024
    Inventors: Robert John Filkins, Thomas Charles Adcock
  • Publication number: 20240017481
    Abstract: Methods of additively manufacturing a three-dimensional object include irradiating a first build plane region using a first energy beam defining a beam diameter, the first energy beam travelling along a first oscillating path in a first direction to consolidate a first wall defining a thickness perpendicular to the first direction, wherein a build material adjacent a first side of the first wall and the build material adjacent a second side of the first wall, opposite the first side of the first wall, remains unconsolidated; and wherein the thickness of the first wall is greater than the beam diameter.
    Type: Application
    Filed: July 15, 2022
    Publication date: January 18, 2024
    Inventors: Victor Petrovich Ostroverkhov, Christopher Darby Immer, Thomas Charles Adcock, Justin John Gambone, Daniel Jason Erno, Brian Scott McCarthy, John Joseph Madelone, JR.
  • Publication number: 20240017327
    Abstract: Additive manufacturing methods and systems are disclosed including irradiation devices for an additive manufacturing machine for additively manufacturing three-dimensional objects. The irradiation device includes a beam generation device configured to provide an energy beam travelling on a nominal beam path trajectory and an optical modulator comprising a reflective optic downstream from the beam generating device, wherein the optical modulator is configured to actuate the reflective optic to modify a position of the energy beam from the nominal beam path trajectory. The irradiation device further includes an optical scanner disposed downstream from the optical modulator, wherein the optical scanner is configured to translate the nominal beam path trajectory along a build plane of the additive manufacturing machine.
    Type: Application
    Filed: July 17, 2023
    Publication date: January 18, 2024
    Inventors: Christopher Darby Immer, Robert John Filkins, Victor Petrovich Ostroverkhov, Younkoo Jeong, Thomas Charles Adcock, Christopher J. Klapper
  • Patent number: 11571743
    Abstract: In one aspect, an additive manufacturing system is provided. The additive manufacturing system includes a build platform, a first plurality of particles positioned on the build platform, and a particle containment system positioned on the build platform. The particle containment system includes a particle containment wall. The particle containment wall at least partially surrounds the first plurality of particles and includes a second plurality of particles consolidated together. The particle containment wall includes a top end spaced apart from the build platform, an inner face positioned against the first plurality of particles and extending between the build platform and the top end, and an outer face that faces a substantially particle-free region, the outer face positioned opposite the inner face and extending between the build platform and the top end.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: February 7, 2023
    Assignee: General Electric Company
    Inventors: Michael Evans Graham, William Monaghan, Thomas Charles Adcock, Andrew J. Martin, John Joseph Madelone, Jr., David Charles Bogdan, Jr., John Broddus Deaton, Jr., William Thomas Carter
  • Publication number: 20210323093
    Abstract: A method of fabricating a component is provided. The method includes depositing particles onto a build platform. The method also includes distributing the particles to form a build layer. The method further includes operating a consolidation device to consolidate a first plurality of particles along a scan path to form a component. The component includes a top surface spaced apart from the build platform and an outer surface. The outer surface extends between the build platform and the top surface, and at least a portion of the outer surface faces a substantially particle-free region of the build platform.
    Type: Application
    Filed: June 30, 2021
    Publication date: October 21, 2021
    Inventors: Michael Evans Graham, Thomas Charles Adcock, John Joseph Madelone,, JR., John Broddus Deaton,, JR.
  • Patent number: 11090861
    Abstract: An additive manufacturing system includes a build platform, a plurality of particles positioned on the build platform defining a build layer, a first and second region within the build layer, and at least one consolidation device. The first region and the second region each including a portion of the plurality of particles. The at least one consolidation device is configured to consolidate the plurality of particles within the build layer into a solid, consolidated portion of said build layer. The consolidation device is further configured to consolidate at least one of the plurality of particles within the build layer and the solid, consolidated portion of the build layer into a molten volume of transfer material. The consolidation device is further configured to transfer a portion of the molten volume of transfer material within the first region from the first region to the second region.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: August 17, 2021
    Assignee: General Electric Company
    Inventors: Michael Evans Graham, William Thomas Carter, John Broddus Deaton, Jr., John Joseph Madelone, Jr., Thomas Charles Adcock, Matthias Hoebel, Subhrajit Roychowdhury
  • Patent number: 11072039
    Abstract: A method of fabricating a component is provided. The method includes depositing particles onto a build platform. The method also includes distributing the particles to form a build layer. The method further includes operating a consolidation device to consolidate a first plurality of particles along a scan path to form a component. The component includes a top surface spaced apart from the build platform and an outer surface. The outer surface extends between the build platform and the top surface, and at least a portion of the outer surface faces a substantially particle-free region of the build platform.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: July 27, 2021
    Assignee: General Electric Company
    Inventors: Michael Evans Graham, Thomas Charles Adcock, John Joseph Madelone, Jr., John Broddus Deaton, Jr.
  • Patent number: 10919115
    Abstract: An additive manufacturing system includes a build platform, at least one first consolidation device, and at least one second consolidation device. The at least one first consolidation device is configured to direct at least one first energy beam to a first face of a component. The first face has a first orientation. The at least one second consolidation device is configured to simultaneously direct at least one second energy beam toward a second face of the component as the first consolidation device directs the at least one first energy beam toward the first face. The second face has a second orientation different from the first orientation.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: February 16, 2021
    Assignee: General Electric Company
    Inventors: John Joseph Madelone, Jr., Thomas Charles Adcock, John Broddus Deaton, Jr., Michael Evans Graham
  • Publication number: 20210016394
    Abstract: A method of aligning at least one laser beam of an additive manufacturing arrangement. The method includes measuring a surface of the calibration plate at a plurality of measurement points using the coordinate measuring machine. The method further includes generating a correction field based on the plurality of measurement points using the coordinate measuring machine. The method further includes writing at least one fiducial mark on the surface of the calibration plate using the at least one laser beam. The method further includes generating calibration data for the surface of the calibration plate using the calibration system. The method also includes aligning the laser beam within the additive manufacturing system based on the calibration data and the correction field using the computing device by comparing a position of the fiducial mark from the calibration data with the correction field to determine a corrected position of the laser beam.
    Type: Application
    Filed: July 18, 2019
    Publication date: January 21, 2021
    Inventors: Brian Scott McCarthy, Eric Edward Halla, Thomas Charles Adcock, Michael Evans Graham, Andrea Marie Schmitz, Mark Samuel Bailey
  • Patent number: 10682812
    Abstract: A powder spreader is presented. The powder spreader includes a base element having at least a first side and a spreading element including a sheet having a curved portion protruding from the at least first side of the base element, where the curved portion of the sheet is substantially free of a discontinuity. An additive manufacturing apparatus including the powder spreader is also presented.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: June 16, 2020
    Assignee: General Electric Company
    Inventor: Thomas Charles Adcock
  • Publication number: 20200031042
    Abstract: An additive manufacturing system includes a build platform, a plurality of particles positioned on the build platform defining a build layer, a first and second region within the build layer, and at least one consolidation device. The first region and the second region each including a portion of the plurality of particles. The at least one consolidation device is configured to consolidate the plurality of particles within the build layer into a solid, consolidated portion of said build layer. The consolidation device is further configured to consolidate at least one of the plurality of particles within the build layer and the solid, consolidated portion of the build layer into a molten volume of transfer material. The consolidation device is further configured to transfer a portion of the molten volume of transfer material within the first region from the first region to the second region.
    Type: Application
    Filed: July 26, 2018
    Publication date: January 30, 2020
    Inventors: Michael Evans Graham, William Thomas Carter, John Broddus Deaton, JR., John Joseph Madelone, JR., Thomas Charles Adcock, Matthias Hoebel, Subhrajit Roychowdhury
  • Patent number: 10533901
    Abstract: An imaging system includes a sight tube extending along a longitudinal axis of the imaging system and configured to extend through an access port. The sight tube includes a wall extending about the longitudinal axis and defining a cavity. The imaging system also includes a plurality of cooling channels extending through the sight tube. The plurality of cooling channels are configured to direct cooling fluid through the sight tube for cooling the imaging system. The plurality of cooling channels are formed in the sight tube such that at least one cooling channel of the plurality of cooling channels extends in a direction oblique to the longitudinal axis.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: January 14, 2020
    Assignee: General Electric Company
    Inventors: Guanghua Wang, Nirm Velumylum Nirmalan, Mohamed Sakami, Thomas Charles Adcock, Jeffrey Jay Porubcan, James William Sears, Naveenan Thiagarajan, Bernard Bewlay, Jason Edward Dees, James DeLancey
  • Patent number: 10532515
    Abstract: A method that includes additively manufacturing with an additive manufacturing (AM) system a sub-component that has a locator element. Using a control system of the AM system for positioning a first location of the locator element. Selectively placing a portion of another sub-component adjacent to the locator element, based on the positioning. Then attaching the second sub-component to the first sub-component in a region, wherein the region is based on the positioning knowledge from the control system so as to make a component. A component that comprises a first sub-component that has an AM locator element; and a second sub-component attached to the first sub-component, wherein the locator element is attached to the second sub-component within the same additive manufacturing build chamber as the first sub-component.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: January 14, 2020
    Assignee: General Electric Company
    Inventors: Michael Evans Graham, John Broddus Deaton, Jr., Mark Allen Cheverton, Thomas Charles Adcock, Andrew David Deal, Marshall Gordon Jones, Prabhjot Singh
  • Patent number: 10514680
    Abstract: A method of manufacturing a component using an additive manufacturing system is provided. The method includes providing a build file on a controller of the additive manufacturing system. The build file includes at least one generating function, at least one seed value, and at least one function parameter. The method also includes generating a curve that corresponds to the component based on the at least one generating function, the at least one seed value, and the at least one function parameter. The method further includes positioning a material on a surface. The method further includes determining, using the controller, a plurality of set points for a consolidation device. The plurality of set points are located along the curve. The method also includes operating the consolidation device of the additive manufacturing system to consolidate the material.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: December 24, 2019
    Assignee: General Electric Company
    Inventors: John Joseph Madelone, Jr., Thomas Charles Adcock, Justin John Gambone, Jr., Michael Evans Graham, Subhrajit Roychowdhury, Daniel J. Erno
  • Publication number: 20190381604
    Abstract: A method of fabricating a component is provided. The method includes depositing particles onto a build platform. The method also includes distributing the particles to form a build layer. The method further includes operating a consolidation device to consolidate a first plurality of particles along a scan path to form a component. The component includes a top surface spaced apart from the build platform and an outer surface. The outer surface extends between the build platform and the top surface, and at least a portion of the outer surface faces a substantially particle-free region of the build platform.
    Type: Application
    Filed: June 13, 2018
    Publication date: December 19, 2019
    Inventors: Michael Evans Graham, Thomas Charles Adcock, John Joseph Madelone, Jr., John Broddus Deaton, Jr.
  • Publication number: 20190381605
    Abstract: An additive manufacturing system includes a build platform, at least one first consolidation device, and at least one second consolidation device. The at least one first consolidation device is configured to direct at least one first energy beam to a first face of a component. The first face has a first orientation. The at least one second consolidation device is configured to simultaneously direct at least one second energy beam toward a second face of the component as the first consolidation device directs the at least one first energy beam toward the first face. The second face has a second orientation different from the first orientation.
    Type: Application
    Filed: June 13, 2018
    Publication date: December 19, 2019
    Inventors: John Joseph Madelone, JR., Thomas Charles Adcock, John Broddus Deaton, JR., Michael Evans Graham
  • Publication number: 20190210281
    Abstract: A powder spreader is presented. The powder spreader includes a base element having at least a first side and a spreading element including a sheet having a curved portion protruding from the at least first side of the base element, where the curved portion of the sheet is substantially free of a discontinuity. An additive manufacturing apparatus including the powder spreader is also presented.
    Type: Application
    Filed: January 10, 2018
    Publication date: July 11, 2019
    Inventor: Thomas Charles Adcock
  • Patent number: 10307823
    Abstract: A method for repairing a structure in an additive manufacturing system is provided. The method includes detecting a defect in a structure formed using an additive manufacturing process, the structure including a first surface that faces a powder containing region and a second surface that faces a substantially powder free region, generating a supplemental scan path that covers at least a portion of the structure based on a location of the detected defect, and controlling a consolidation device, based on the supplemental scan path, to remedy the defect.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: June 4, 2019
    Assignee: General Electric Company
    Inventors: John Broddus Deaton, Jr., Thomas Charles Adcock, William Monaghan, John Joseph Madelone, Jr., Michael Evans Graham
  • Publication number: 20190143408
    Abstract: In one aspect, an additive manufacturing system is provided. The additive manufacturing system includes a build platform, a first plurality of particles positioned on the build platform, and a particle containment system positioned on the build platform. The particle containment system includes a particle containment wall. The particle containment wall at least partially surrounds the first plurality of particles and includes a second plurality of particles consolidated together. The particle containment wall includes a top end spaced apart from the build platform, an inner face positioned against the first plurality of particles and extending between the build platform and the top end, and an outer face that faces a substantially particle-free region, the outer face positioned opposite the inner face and extending between the build platform and the top end.
    Type: Application
    Filed: November 13, 2017
    Publication date: May 16, 2019
    Inventors: Michael Evans Graham, William Monaghan, Thomas Charles Adcock, Andrew J. Martin, John Joseph Madelone, Jr., David Charles Bogdan, Jr., John Broddus Deaton, Jr., William Thomas Carter