Patents by Inventor Thomas Dandekar

Thomas Dandekar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180298370
    Abstract: The present invention relates to bacterial nanocellulose composite which comprises nanocellulose, sensor or signal processing molecule(s), actuator/effector molecule(s) and/or cells and optionally further component(s). The present invention further relates to the use of the bacterial nanocellulose composite in chip technology and material engineering. The present invention relates to a printing, storage and/or processing medium as well as a smart card or chip card comprising the bacterial nanocellulose composite. The present invention further relates to the medical use of the bacterial nanocellulose composite, preferably in wound healing, tissue engineering and as transplant. The present invention further relates to a skin, tissue or neuro transplant. The present invention also relates to methods of stimulus conduction, muscle stimulation and/or monitoring heartbeat. The present invention further relates to a method for producing a nanocellulose composite chip using 3D printer.
    Type: Application
    Filed: April 27, 2016
    Publication date: October 18, 2018
    Inventor: Thomas Dandekar
  • Patent number: 4777019
    Abstract: This invention introduces a new class of devices for detecting the presence of biological molecules. The construction principle of the device involves the direct introduction of small monomers of macromolecules into the surface layer of a semiconductor, for example by doping at the gate-area of a field effect transistor (or any other similar suitable electronic device, also on carbon basis). There are a few biological monomers which pair specifically enough for a selective measurement, such as nucleotides (or portions thereof, e.g. adenine, thymine, guanine, cytosine and uracil). This invention leads to substantial improvement of biosensors, as there should be: Better signal to noise ratio, and options for: reading of nucleotide sequences, better process control, and new synthesis possibilities (e.g. modified Merrifield Synthesis). The invention also offers the potential to construct cybernetic systems and true biochips.
    Type: Grant
    Filed: April 11, 1986
    Date of Patent: October 11, 1988
    Inventor: Thomas Dandekar