Patents by Inventor Thomas G. Thundat

Thomas G. Thundat has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8378286
    Abstract: Provided are improvements to photo detecting devices and methods for enhancing the sensitivity of photo detecting devices. A photo detecting device generates an electronic signal in response to a received light pulse. An electro-mechanical acoustic resonator, electrically coupled to the photo detecting device, damps the electronic signal and increases the signal noise ratio (SNR) of the electronic signal. Increased photo detector standoff distances and sensitivities will result.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: February 19, 2013
    Assignee: UT-Battelle, LLC
    Inventors: Thomas G. Thundat, Lawrence R. Senesac, Charles W. Van Neste
  • Patent number: 8194246
    Abstract: A system generates a photoacoustic spectrum in an open or closed environment with reduced noise. A source focuses a beam on a target substance disposed on a base. The base supports a cantilever that measures acoustic waves generated as light is absorbed by the target substance. By focusing a chopped/pulsed light beam on the target substance, a range of optical absorbance may be measured as the wavelength of light changes. An identifying spectrum of the target may detected by monitoring the vibration intensity variation of the cantilever as a function of illuminating wavelength or color.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: June 5, 2012
    Assignee: UT-Battellle, LLC
    Inventors: Thomas G. Thundat, Charles W. Van Neste, Gilbert M. Brown, Lawrence R. Senesac
  • Patent number: 8110082
    Abstract: A method, system, and apparatus are provided for separating molecules, such as biomolecules. The method, system, and apparatus utilize an electrochemical cell having at least two electrodes, one electrode comprising a photo-sensitive material capable of generating a photopotential. Molecules are moved through an electrolyte medium between the at least two electrodes based upon localized photopotentials.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: February 7, 2012
    Assignee: UT-Battelle, LLC
    Inventors: Thomas G. Thundat, Thomas L Ferrell, Gilbert M. Brown
  • Publication number: 20120012737
    Abstract: Provided are improvements to photo detecting devices and methods for enhancing the sensitivity of photo detecting devices. A photo detecting device generates an electronic signal in response to a received light pulse. An electro-mechanical acoustic resonator, electrically coupled to the photo detecting device, damps the electronic signal and increases the signal noise ratio (SNR) of the electronic signal. Increased photo detector standoff distances and sensitivities will result.
    Type: Application
    Filed: July 16, 2010
    Publication date: January 19, 2012
    Applicant: UT-BATTELLE, LLC
    Inventors: Thomas G. Thundat, Lawrence R. Senesac, Charles W. Van Neste
  • Publication number: 20120002191
    Abstract: A system and method are disclosed for standoff spectroscopy of molecules (e.g. from a residue) on a surface from a distance. A source emits radiation that modifies or conditions the residue, such as through photodecomposition. A spectral generating source measures a spectrum of the residue before and after the residue is exposed to the radiation from that source. The two spectra are compared to produce a distinct identification of the residues on the surface or identify certain properties of the residue.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: UT-BATTELLE, LLC
    Inventors: Charles W. Van Neste, Marissa E. Morales-Rodriguez, Lawrence R. Senesac, Thomas G. Thundat
  • Patent number: 8080796
    Abstract: A system and method are disclosed for standoff spectroscopy of molecules (e.g. from a residue) on a surface from a distance. A source emits radiation that modifies or conditions the residue, such as through photodecomposition. A spectral generating source measures a spectrum of the residue before and after the residue is exposed to the radiation from that source. The two spectra are compared to produce a distinct identification of the residues on the surface or identify certain properties of the residue.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: December 20, 2011
    Assignee: UT-Battelle, LLC
    Inventors: Charles W. Van Neste, Marissa E. Morales-Rodriguez, Lawrence R. Senesac, Thomas G. Thundat
  • Patent number: 7972865
    Abstract: A sensor for detecting and differentiating chemical analytes includes a microscale body having a first end and a second end and a surface between the ends for adsorbing a chemical analyte. The surface includes at least one conductive heating track for heating the chemical analyte and also a conductive response track, which is electrically isolated from the heating track, for producing a thermal response signal from the chemical analyte. The heating track is electrically connected with a voltage source and the response track is electrically connected with a signal recorder. The microscale body is restrained at the first end and the second end and is substantially isolated from its surroundings therebetween, thus having a bridge configuration.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: July 5, 2011
    Assignee: UT-Battelle, LLC
    Inventors: Dechang Yi, Lawrence R. Senesac, Thomas G. Thundat
  • Patent number: 7961313
    Abstract: A system and method are disclosed for generating a photoacoustic spectrum in an open or closed environment with reduced noise. A source may emit a beam to a target substance coated on a detector that measures acoustic waves generated as a result of a light beam being absorbed by the target substance. By emitting a chopped/pulsed light beam to the target substance on the detector, it may be possible to determine the target's optical absorbance as the wavelength of light is changed. Rejection may decrease the intensity of the acoustic waves on the detector while absorption may increase the intensity. Accordingly, an identifying spectrum of the target may be made with the intensity variation of the detector as a function of illuminating wavelength.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: June 14, 2011
    Assignee: UT-Battelle, LLC
    Inventors: Charles W. Van Neste, Lawrence R. Senesac, Thomas G. Thundat
  • Patent number: 7939811
    Abstract: Low energy light illumination and either a doped semiconductor surface or a surface-plasmon supporting surface are used in combination for manipulating a fluid on the surface in the absence of any applied electric fields or flow channels. Precise control of fluid flow is achieved by applying focused or tightly collimated low energy light to the surface-fluid interface. In the first embodiment, with an appropriate dopant level in the semiconductor substrate, optically excited charge carriers are made to move to the surface when illuminated. In a second embodiment, with a thin-film noble metal surface on a dispersive substrate, optically excited surface plasmons are created for fluid manipulation. This electrode-less optical control of the Marangoni effect provides re-configurable manipulations of fluid flow, thereby paving the way for reprogrammable microfluidic devices.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: May 10, 2011
    Assignee: UT-Battelle, LLC
    Inventors: Thomas G Thundat, Ali Passian, Rubye H Farahi
  • Patent number: 7924423
    Abstract: A system and method are disclosed for generating a reversed photoacoustic spectrum at a greater distance. A source may emit a beam to a target and a detector measures signals generated as a result of the beam being emitted on the target. By emitting a chopped/pulsed light beam to the target, it may be possible to determine the target's optical absorbance by monitoring the intensity of light collected at the detector at different wavelengths. As the wavelength of light is changed, the target may absorb or reject each optical frequency. Rejection may increase the intensity at the sensing element and absorption may decrease the intensity. Accordingly, an identifying spectrum of the target may be made with the intensity variation of the detector as a function of illuminating wavelength.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: April 12, 2011
    Assignee: UT-Battelle, LLC
    Inventors: Charles W. Van Neste, Lawrence R. Senesac, Thomas G. Thundat
  • Patent number: 7716965
    Abstract: An electrochemical suspended element-based sensor system includes a solution cell for holding an electrolyte comprising solution including at least one electrochemically reducible or oxidizable species. A working electrode (WE), reference electrode (RE) and a counter electrode (CE) are disposed in the solution. The CE includes an asymmetric suspended element, wherein one side of the suspended element includes a metal or a highly doped semiconductor surface. The suspended element bends when current associated with reduction or oxidation of the electrochemically reducible or oxidizable species at the WE passes through the suspended element. At least one measurement system measures the bending of the suspended element or a parameter which is a function of the bending.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: May 18, 2010
    Assignee: UT-Battelle, LLC
    Inventors: Thomas G. Thundat, Gilbert M. Brown
  • Publication number: 20100055801
    Abstract: A sensor for detecting and differentiating chemical analytes includes a microscale body having a first end and a second end and a surface between the ends for adsorbing a chemical analyte. The surface includes at least one conductive heating track for heating the chemical analyte and also a conductive response track, which is electrically isolated from the heating track, for producing a thermal response signal from the chemical analyte. The heating track is electrically connected with a voltage source and the response track is electrically connected with a signal recorder. The microscale body is restrained at the first end and the second end and is substantially isolated from its surroundings therebetween, thus having a bridge configuration.
    Type: Application
    Filed: August 26, 2008
    Publication date: March 4, 2010
    Inventors: Dechang Yi, Lawrence R. Senesac, Thomas G. Thundat
  • Patent number: 7665364
    Abstract: A method and apparatus for identifying a sample, involves illuminating the sample with light of varying wavelengths, transmitting an acoustic signal against the sample from one portion and receiving a resulting acoustic signal on another portion, detecting a change of phase in the acoustic signal corresponding to the light of varying wavelengths, and analyzing the change of phase in the acoustic signal for the varying wavelengths of illumination to identify the sample. The apparatus has a controlled source for illuminating the sample with light of varying wavelengths, a transmitter for transmitting an acoustic wave, a receiver for receiving the acoustic wave and converting the acoustic wave to an electronic signal, and an electronic circuit for detecting a change of phase in the acoustic wave corresponding to respective ones of the varying wavelengths and outputting the change of phase for the varying wavelengths to allow identification of the sample.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: February 23, 2010
    Assignee: UT-Battelle, LLC
    Inventors: Ming Su, Thomas G. Thundat, David Hedden
  • Publication number: 20100033723
    Abstract: A system generates a photoacoustic spectrum in an open or closed environment with reduced noise. A source focuses a beam on a target substance disposed on a base. The base supports a cantilever that measures acoustic waves generated as light is absorbed by the target substance. By focusing a chopped/pulsed light beam on the target substance, a range of optical absorbance may be measured as the wavelength of light changes. An identifying spectrum of the target may detected by monitoring the vibration intensity variation of the cantilever as a function of illuminating wavelength or color.
    Type: Application
    Filed: June 19, 2009
    Publication date: February 11, 2010
    Applicant: UT-BATTELLE, LLC
    Inventors: Thomas G. Thundat, Charles W. Van Neste, Gilbert M. Brown, Lawrence R. Senesac
  • Publication number: 20100033720
    Abstract: A system and method are disclosed for generating a reversed photoacoustic spectrum at a greater distance. A source may emit a beam to a target and a detector measures signals generated as a result of the beam being emitted on the target. By emitting a chopped/pulsed light beam to the target, it may be possible to determine the target's optical absorbance by monitoring the intensity of light collected at the detector at different wavelengths. As the wavelength of light is changed, the target may absorb or reject each optical frequency. Rejection may increase the intensity at the sensing element and absorption may decrease the intensity. Accordingly, an identifying spectrum of the target may be made with the intensity variation of the detector as a function of illuminating wavelength.
    Type: Application
    Filed: August 11, 2008
    Publication date: February 11, 2010
    Applicant: UT-BATTELLE, LLC
    Inventors: Charles W. Van Neste, Lawrence R. Senesac, Thomas G. Thundat
  • Publication number: 20100033722
    Abstract: A system and method are disclosed for generating a photoacoustic spectrum in an open or closed environment with reduced noise. A source may emit a beam to a target substance coated on a detector that measures acoustic waves generated as a result of a light beam being absorbed by the target substance. By emitting a chopped/pulsed light beam to the target substance on the detector, it may be possible to determine the target's optical absorbance as the wavelength of light is changed. Rejection may decrease the intensity of the acoustic waves on the detector while absorption may increase the intensity. Accordingly, an identifying spectrum of the target may be made with the intensity variation of the detector as a function of illuminating wavelength.
    Type: Application
    Filed: August 11, 2008
    Publication date: February 11, 2010
    Applicant: UT-BATTELLE, LLC
    Inventors: Charles W. Van Neste, Lawrence R. Senesac, Thomas G. Thundat
  • Patent number: 7579052
    Abstract: Highly sensitive sensor platforms for the detection of specific reagents, such as chromate, gasoline and biological species, using microcantilevers and other microelectromechanical systems (MEMS) whose surfaces have been modified with photochemically attached organic monolayers, such as self-assembled monolayers (SAM), or gold-thiol surface linkage are taught. The microcantilever sensors use photochemical hydrosilylation to modify silicon surfaces and gold-thiol chemistry to modify metallic surfaces thereby enabling individual microcantilevers in multicantilever array chips to be modified separately. Terminal vinyl substituted hydrocarbons with a variety of molecular recognition sites can be attached to the surface of silicon via the photochemical hydrosilylation process.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: August 25, 2009
    Assignee: UT-Battelle, LLC
    Inventors: Vassil I. Boiadjiev, Gilbert M. Brown, Lal A. Pinnaduwage, Thomas G. Thundat, Peter V. Bonnesen, Gudrun Goretzki
  • Publication number: 20090020426
    Abstract: Low energy light illumination and either a doped semiconductor surface or a surface-plasmon supporting surface are used in combination for manipulating a fluid on the surface in the absence of any applied electric fields or flow channels. Precise control of fluid flow is achieved by applying focused or tightly collimated low energy light to the surface-fluid interface. In the first embodiment, with an appropriate dopant level in the semiconductor substrate, optically excited charge carriers are made to move to the surface when illuminated. In a second embodiment, with a thin-film noble metal surface on a dispersive substrate, optically excited surface plasmons are created for fluid manipulation. This electrode-less optical control of the Marangoni effect provides re-configurable manipulations of fluid flow, thereby paving the way for reprogrammable microfluidic devices.
    Type: Application
    Filed: July 16, 2007
    Publication date: January 22, 2009
    Applicant: UT-BATTELLE, LLC
    Inventors: Thomas G. Thundat, Ali Passian, Rubye H. Farahi
  • Publication number: 20080206103
    Abstract: Methods for the preparation of a stable, self-assembled monolayer on the silicon surface or metallic coating of a microcantilever are disclosed. The methods produce a microcantilever suitable as a chemical sensor. In a microcantilever produced using one version of the method, a metallic coating is disposed on a side of the microcantilever, a bridging atom is bonded to the metallic coating, a first spacer group is bonded to the bridging atom, a second spacer group is bonded to the bridging atom, and a chemical recognition agent is bonded to the first spacer group. In another version of the method, a silicon surface of a microcantilever is hydrogen terminated, and a calixarene chemical recognition agent is carbon linked to the silicon surface using photochemical hydrosilylation. Among other things, the calixarene may be bonded to a crown ether for ion detection or bonded to a area for the recognition of explosives by hydrogen bonding to nitro groups.
    Type: Application
    Filed: September 14, 2005
    Publication date: August 28, 2008
    Applicants: UT-BATTELLE, LLC, UNIVERSITY OF TENNESSEE RESEARCH FOUNDATION
    Inventors: Lal A. Pinnaduwage, Thomas G. Thundat, Gilbert M. Brown, Peter V. Bonnesen, Vassil Boiadjiev, Gudron Goretzki
  • Publication number: 20080099330
    Abstract: An electrochemical suspended element-based sensor system includes a solution cell for holding an electrolyte comprising solution including at least one electrochemically reducible or oxidizable species. A working electrode (WE), reference electrode (RE) and a counter electrode (CE) are disposed in the solution. The CE includes an asymmetric suspended element, wherein one side of the suspended element includes a metal or a highly doped semiconductor surface. The suspended element bends when current associated with reduction or oxidation of the electrochemically reducible or oxidizable species at the WE passes through the suspended element. At least one measurement system measures the bending of the suspended element or a parameter which is a function of the bending.
    Type: Application
    Filed: October 27, 2006
    Publication date: May 1, 2008
    Inventors: Thomas G. Thundat, Gilbert M. Brown