Patents by Inventor Thomas H. Peterson

Thomas H. Peterson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12063894
    Abstract: A system and method for automatic wrapping bales in a bale wrapper, including placing a bale on a loading table and performing a wrapping cycle. The wrapping cycle including rotating a wrapping hoop to apply a wrapping material to a bale surface, moving a bale pushing device from a first position toward a second position to push the bale through the wrapping hoop, dispensing from a first material applicator and a second material applicator, determining presence of the wrapping material, by a sensor on the wrapping hoop, adjusting based on the determining, a ratio of moving speed to rotational speed of the wrapping hoop, to apply a predetermined amount of wrapping material independent of the presence of wrapping material dispensing, continuing to move the bale pushing device until the second position is reached, stopping the rotation of the wrapping hoop, and moving the bale pushing device to the first position.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: August 20, 2024
    Assignee: KUHN NORTH AMERICA, INC.
    Inventors: Shane Williams, Justin H. Mainwaring, Grant J. Heineman, Jacob L. Peterson, Dana Eric Redman, Thomas J. Hoffman
  • Patent number: 12059699
    Abstract: Various examples are provided related to low pressure delivery, e.g., less than 250 psi at the point of application, of plural component system from unpressurized parts A and B material supplies. In one example, a system includes a polyurethane spray foam (“SPF”) raw material supply including parts A and B and a fluid handling system that can deliver the SPF raw material at low pressure to a metal spray gun in metered amounts through separate material fluid paths/conduits via a heated hose length and a whip hose. The fluid handling system can also deliver air at low pressure to the spray gun through separate air stream paths so that the air is communicated to the part A and B material conduits forward of the part A and B material input locations, where they are supplied separately to a mixing nozzle that is engaged at an end of the spray gun.
    Type: Grant
    Filed: June 12, 2023
    Date of Patent: August 13, 2024
    Assignee: Spray Foam Systems, LLC
    Inventors: Thomas Joseph Peters, James F. Peterson, David H. Faulkner
  • Publication number: 20240238816
    Abstract: The disclosure provides methods for preparing a plural component material where part A and part B supplies are delivered from unpressurized storage containers. In use, a continuous stream of high velocity air moves through the static mixing nozzle, and the material streams may be intermittently moved into the nozzle and aerated with an air supply to cause the A and B materials to be mixed with each other and moved with the air to form the plural component materials. The plural component materials are delivered from a static mixing nozzle at pressures of less than 300 psi. Spray guns configured for preparing the plural component materials are also disclosed. Polyurethane foams, polyurethane adhesives, and polyurea coatings prepared by the methods are further provided.
    Type: Application
    Filed: January 23, 2024
    Publication date: July 18, 2024
    Inventors: Thomas Joseph PETERS, James F. PETERSON, David H. FAULKNER
  • Patent number: 12037347
    Abstract: A composition having the structure of formula I: [R—Ar—(COOH)2]x[Ar—(COOH)3]2-xM32+??(I) is provided where M is Mn, Cu, Co, Fe, Zn, Cd, Ni, or Pt; R is a bromine, nitro, a primary amine, C1-C4 alkyl secondary amine, C1-C4 alkyl oxy, Br—(C1-C4 alkyl), NO2—(C1-C4 alkyl), a mercaptan, and reaction products of any of the aforementioned with acyl chlorides of the formulas: CH3(CH2)mC(O)Cl, or CH3(CH(C1-C4 alkyl)CH2)mC(O)Cl, or CH3(CH2)m-Ph-(CH2)pC(O)Cl, where Ph is a C6 phenyl or C6 phenyl with one or more hydrogens replaced with F, C1-C4 fluoroalkyl, or C1-C4 perfluoroalkyl; m is independently in each occurrence an integer of 0 to 12 inclusive; p is an integer of 0 to 36 inclusive, to form an amide, a thioamide, or an ester; Ar is a 1,3,5-modified phenyl, and 1.4>×>0. A process of synthesis thereof and the use to chemically modify a gaseous reactant are also provided.
    Type: Grant
    Filed: September 30, 2022
    Date of Patent: July 16, 2024
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventors: Gregory W. Peterson, Thomas H. Epps, III
  • Publication number: 20240141111
    Abstract: A silicone-polyolefin composition is disclosed. The silicone-polyolefin composition comprises (A) a polysiloxane, (B) a functionalized polyolefin, and (C) a curable silicone elastomer component. The polysiloxane (A) comprises an average of at least one functional group X per molecule, and the functionalized polyolefin (B) comprises an average of at least one functional group Y per molecule, where the functional group X and functional group Y are reactable to form a bond therebetween. A silicone-polyolefin blend, a curable composition comprising the silicone-polyolefin blend, a cured product of the curable composition, and methods of preparing the silicone-polyolefin blend, curable composition, and cured product are also disclosed.
    Type: Application
    Filed: February 10, 2022
    Publication date: May 2, 2024
    Inventors: Dongchan AHN, Noel Mower CHANG, Marc-Andre COURTEMANCHE, Zachary KEAN, Thomas H. PETERSON
  • Publication number: 20240132721
    Abstract: A flowable silicone-polyolefin composition is disclosed. The silicone-polyolefin composition comprises (A) a polysiloxane and (B) a functionalized polyolefin dispersed in the polysiloxane (A). The polysiloxane (A) comprises an average per molecule of at least one functional group X, and the functionalized polyolefin (B) comprises an average per molecule of at least one functional group Y that is reactable with the functional group X of the polysiloxane (A) to form a bond therebetween. A curable composition comprising the flowable silicone-polyolefin composition, a cured product of the curable composition, and methods of preparing the flowable silicone-polyolefin composition, curable composition, and cured product are also disclosed.
    Type: Application
    Filed: February 10, 2022
    Publication date: April 25, 2024
    Inventors: Dongchan AHN, Noel Mower CHANG, Alyssa FIELITZ, Zachary KEAN, Thomas H. PETERSON, Peter WALLER
  • Patent number: 11945945
    Abstract: A resin including up to 99.99 weight percent (wt. %) of a first polyolefin grafted with a functional group selected from an ethylenically unsaturated carboxylic acid, a carboxylic acid anhydride, an ester functional group or a combination thereof; and 0.01 to 3.0 wt. % of a tin oxide-based catalyst, where the resin includes 0.2 wt. % to 1.5 wt. % of the functional group from the first polyolefin, the wt. % based on a total weight of the resin. The first polyolefin can be selected from a polyethylene, a polypropylene, an ethylene/alpha-olefin copolymer, a propylene/alpha-olefin copolymer and combinations thereof. The tin oxide-based catalyst can be selected from dibutyltin oxide, dioctyltin oxide and combinations thereof. The resin can be used in a multilayer structure, where a Layer A comprises the resin and a Layer B comprises a polyester, where a first major surface of Layer A is in adhering contact with the second major surface of Layer B.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: April 2, 2024
    Assignees: Dow Global Technologies LLC, Regents of The University of Minnesota
    Inventors: Kunwei Liu, Alex Michael Jordan, Christopher John Ellison, Christopher Ward Macosko, Christopher M. Thurber, Wenyi Huang, Thomas H. Peterson
  • Patent number: 11857935
    Abstract: A heterogeneous procatalyst includes a titanium species, a magnesium chloride component, and a chlorinating agent having a structure A(Cl)x(R1)3-x, where A is aluminum or boron, R1 is a (C1-C30) hydrocarbyl, and x is 1, 2, or 3. The magnesium chloride component may be thermally treated at a temperature greater than 100 C for at least 30 minutes before or after introduction of the chlorinating agent and titanium species to the heterogeneous procatalyst. The heterogeneous procatalyst having the thermally treated magnesium chloride exhibits improved average molecular weight capability. Processes for producing the heterogeneous procatalyst and processes for producing ethylene-based polymers utilizing the heterogeneous procatalyst are also disclosed.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: January 2, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Mingzhe Yu, David Gordon Barton, Kurt F. Hirsekorn, Sadeka Onam, Peter N. Nickias, Andrew T. Heitsch, Thomas H. Peterson
  • Publication number: 20220266238
    Abstract: According to a least one feature of the present disclosure, a method includes the steps: (a) providing a metallosilicate catalyst that has been used to catalyze a chemical reaction; and (b) heating the metallosilicate catalyst to a temperature from 200° C. to 425° C. for a period of 0.5 hours to 5 hours.
    Type: Application
    Filed: September 29, 2020
    Publication date: August 25, 2022
    Inventors: Wen -Sheng Lee, Mingzhe Yu, Thomas H. Peterson, Sung-Yu Ku, Wanglin Yu, Le Wang, Stephen W. King
  • Publication number: 20220258142
    Abstract: A method includes the steps of (a) contacting a solvent having a Water Solubility of 1 g or greater per 100 g of water with a metallosilicate catalyst having an alumina to silica ratio from 5 to 1500; and (b) heating the metallosilicate catalyst to a temperature from 125 C to 300 C fora period of 0.5 hours to 5 hours.
    Type: Application
    Filed: September 29, 2020
    Publication date: August 18, 2022
    Inventors: Wen-Sheng Lee, Le Wang, Thomas H. Peterson, Sung-Yu Ku, Wanglin Yu, Stephen W. King
  • Publication number: 20220225899
    Abstract: A subcutaneous analyte sensor applicator includes an inserter module and a sensor module. The inserter module includes an applicator housing, a deployment button, and a pre-loaded insertion assembly completely disposed and secured within the button and partially disposed within the applicator housing when the button is in an initial, loaded position on the applicator housing. The insertion assembly includes an assembly housing, and a biasing element and a needle assembly disposed within the assembly housing chamber where the biasing element is in a compressed state. The sensor module includes a sensor lower housing releasably connected to the applicator housing, a sensor upper housing removably retained against the insertion assembly housing and spaced from the sensor lower housing, and an electro-sensor assembly disposed within the sensor upper housing where a sensor is temporarily disposed within a needle of a needle assembly when the applicator system is in the initial pre-loaded position.
    Type: Application
    Filed: May 14, 2019
    Publication date: July 21, 2022
    Inventors: Thomas H. Peterson, Jonathan Scott, Anthony Florindi, Sten P. Kaeding, Mauro Dellemonache
  • Publication number: 20220213273
    Abstract: A polyorganosiloxanes has an anhydride functionality and an aromatic functionality, wherein a carbon of the aromatic functionality is separated from a carbon of a carbonyl group of the anhydride functionality by a carbon chain, wherein the polyorganosiloxane contains 5 weight-percent or more silicon atoms based on weight of the polyorganosiloxane.
    Type: Application
    Filed: August 3, 2020
    Publication date: July 7, 2022
    Inventors: Dongchan Ahn, Zachary S. Kean, Thomas H. Peterson
  • Publication number: 20220047191
    Abstract: A continuous glucose monitoring system and method has an inserter assembly for inserting a sensor through the skin and into subcutaneous tissue where an inserter housing with the sensor remains on the skin after insertion, a sensor housing cover attachable to the sensor housing after insertion where the sensor housing cover has an electronic module and a battery, and an electronic device equipped with wireless communication for communicating with the electronic module of the sensor housing cover assembly, the electronic device configured for receiving input signals from the sensor, converting the input signals to analyte date, displaying the analyte data on a user interface of the electronic device, storing the data for recall, and creating and/or sending reports of the data.
    Type: Application
    Filed: October 27, 2021
    Publication date: February 17, 2022
    Inventors: Thomas H. Peterson, Handani Winarta, Anthony Florindi
  • Patent number: 11197627
    Abstract: A continuous glucose monitoring system and method has an inserter assembly for inserting a sensor through the skin and into subcutaneous tissue where an inserter housing with the sensor remains on the skin after insertion, a sensor housing cover attachable to the sensor housing after insertion where the sensor housing cover has an electronic module and a battery, and an electronic device equipped with wireless communication for communicating with the electronic module of the sensor housing cover assembly, the electronic device configured for receiving input signals from the sensor, converting the input signals to analyte date, displaying the analyte data on a user interface of the electronic device, storing the data for recall, and creating and/or sending reports of the data.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: December 14, 2021
    Assignee: SANVITA MEDICAL CORPORATION
    Inventors: Thomas H. Peterson, Handani Winarta, Anthony Florindi
  • Publication number: 20210269633
    Abstract: A resin including up to 99.99 weight percent (wt. %) of a first polyolefin grafted with a functional group selected from an ethylenically unsaturated carboxylic acid, a carboxylic acid anhydride, an ester functional group or a combination thereof; and 0.01 to 3.0 wt. % of a tin oxide-based catalyst, where the resin includes 0.2 wt. % to 1.5 wt. % of the functional group from the first polyolefin, the wt. % based on a total weight of the resin. The first polyolefin can be selected from a polyethylene, a polypropylene, an ethylene/alpha-olefin copolymer, a propylene/alpha-olefin copolymer and combinations thereof. The tin oxide-based catalyst can be selected from dibutyltin oxide, dioctyltin oxide and combinations thereof. The resin can be used in a multilayer structure, where a Layer A comprises the resin and a Layer B comprises a polyester, where a first major surface of Layer A is in adhering contact with the second major surface of Layer B.
    Type: Application
    Filed: May 20, 2019
    Publication date: September 2, 2021
    Applicants: Dow Global Technologies LLC, Regents of the University of Minnesota
    Inventors: Kunwei Liu, Alex Michael Jordan, Christopher John Ellison, Christopher Ward Macosko, Christopher M. Thurber, Wenyi Huang, Thomas H. Peterson
  • Publication number: 20210205785
    Abstract: A heterogeneous procatalyst includes a titanium species, a magnesium chloride component, and a chlorinating agent having a structure A(C)x(R1)3-x, where A is aluminum or boron, R1 is a (C1-C30) hydrocarbyl, and x is 1, 2, or 3. The magnesium chloride component may be thermally treated at a temperature greater than 100 C for at least 30 minutes before or after introduction of the chlorinating agent and titanium species to the heterogeneous procatalyst. The heterogeneous procatalyst having the thermally treated magnesium chloride exhibits improved average molecular weight capability. Processes for producing the heterogeneous procatalyst and processes for producing ethylene-based polymers utilizing the heterogeneous procatalyst are also disclosed.
    Type: Application
    Filed: May 23, 2019
    Publication date: July 8, 2021
    Applicant: Dow Global Technologies LLC
    Inventors: Mingzhe Yu, David Gordon Barton, Kurt F. Hirsekorn, Sadeka Onam, Peter N. Nickias, Andrew T. Heitsch, Thomas H. Peterson
  • Patent number: 10703890
    Abstract: Crosslinkable interpolymer blends comprising ethylene monomer residues, residues of comonomers having carboxylic acid and/or carboxylic acid anhydride functionality, and residues of comonomers having epoxide functionality, a peroxide initiator, and optionally a crosslinking catalyst, which, in embodiments, cure to a gel content of greater than (>) 50 wt % within less than 1.5 minutes at 200˜C, and require little or no degassing after crosslinking.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: July 7, 2020
    Assignee: Dow Global Technologies LLC
    Inventors: Dakai Ren, Kyoung moo Koh, Thomas H. Peterson, Tanya N Singh-Rachford, Mark A. Rickard, Jeffrey M. Cogen, Yabin Sun
  • Publication number: 20200185604
    Abstract: Provided is an organic light-emitting diode comprising a substrate, an anode layer, optionally one or more hole injection layers, one or more hole transport layers, optionally one or more electron blocking layers, an emitting layer, optionally one or more hole blocking layers, optionally one or more electron transport layers, an electron injection layer, and a cathode, wherein either the hole injection layer, or the hole transport layer, or both of the hole injection layer and the hole transport layer, or a layer that functions as both a hole injection layer and a hole transport layer, comprises a polymer that comprises one or more triaryl aminium radical cations having the structure (S1) wherein each of R11, R12, R13, R14, R15, R21, R22, R23, R24, R25, R31, R32, R33, R34, and R35 is independently selected from the group consisting of hydrogen, deuterium halogens, amine groups, hydroxyl groups, sulfonate groups, nitro groups, and organic groups, wherein two or more of R11, R12, R13, R14, R15, R21, R22, R23, R
    Type: Application
    Filed: October 20, 2017
    Publication date: June 11, 2020
    Inventors: Robert David Grigg, Liam P. Spencer, John W. Kramer, David D. Devore, Brian Goodfellow, Chun Liu, Sukrit Mukhopadhyay, Thomas H. Peterson, William H. H. Woodward, Anatoliy N. Sokolov
  • Publication number: 20200015720
    Abstract: A continuous glucose monitoring system and method has an inserter assembly for inserting a sensor through the skin and into subcutaneous tissue where an inserter housing with the sensor remains on the skin after insertion, a sensor housing cover attachable to the sensor housing after insertion where the sensor housing cover has an electronic module and a battery, and an electronic device equipped with wireless communication for communicating with the electronic module of the sensor housing cover assembly, the electronic device configured for receiving input signals from the sensor, converting the input signals to analyte date, displaying the analyte data on a user interface of the electronic device, storing the data for recall, and creating and/or sending reports of the data.
    Type: Application
    Filed: December 22, 2016
    Publication date: January 16, 2020
    Applicant: Sanvita Medical, LLC
    Inventors: Thomas H. Peterson, Handani Winarta, Anthony Florindi
  • Patent number: RE50043
    Abstract: Techniques for electronic signature process management are described. Some embodiments provide an electronic signature service (“ESS”) configured to associate third-party content with electronic signature documents by way of dynamic form fields. A dynamic form field is associated with a data store and an electronic signature document. The ESS may automatically populate the dynamic form field with data obtained from the associated data store. If a signer changes the data of the dynamic form field, the ESS may write back the changed data to the data store.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: July 16, 2024
    Assignee: DOCUSIGN, INC.
    Inventors: Thomas H. Gonser, Jr., Donald G. Peterson