Patents by Inventor Thomas J. Dunn

Thomas J. Dunn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190310404
    Abstract: A method of making an infrared-reflecting optically transparent assembly comprises: coating a curable composition onto a major surface of an optically transparent thermoplastic polymer film; at least partially curing the curable composition, which may be optionally at least partially dried, to provide a thermoformable composite film; and laminating the thermoformable composite film to an infrared-reflecting multilayer optical film to provide the infrared-reflecting optically transparent assembly. The curable composition comprises urethane (meth)acrylate compound, (meth)acrylate monomer, and silicone (meth)acrylate. The infrared-reflecting optically transparent assembly and methods of including it in an infrared-reflecting lens assembly are also disclosed.
    Type: Application
    Filed: December 13, 2017
    Publication date: October 10, 2019
    Inventors: Thomas P. Klun, Richard J. Pokorny, Benjamin R. Coonce, Douglas S. Dunn, Gregg A. Ambur, Henry A. Kostalik, IV, John R. Jacobson, Christopher S. DeGraw, Chunjie Zhang
  • Patent number: 10406287
    Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: September 10, 2019
    Assignee: DexCom, Inc.
    Inventors: Anna Leigh Davis, Scott M. Belliveau, Naresh C. Bhavaraju, Leif N. Bowman, Rita M. Castillo, Alexandra Elena Constantin, Rian Draeger, Laura J. Dunn, Gary Brian Gable, Arturo Garcia, Thomas Hall, Hari Hampapuram, Christopher Robert Hannemann, Anna Claire Harley-Trochimczyk, Nathaniel David Heintzman, Andrea J. Jackson, Lauren Hruby Jepson, Apurv Ullas Kamath, Katherine Yerre Koehler, Aditya Sagar Mandapaka, Samuel Jere Marsh, Gary A. Morris, Subrai Girish Pai, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Ashley Anne Rindfleisch, Sofie Wells Schunk, Peter C. Simpson, Daniel Smith, Stephen J. Vanslyke, Matthew T. Vogel, Tomas C. Walker, Benjamin Elrod West, Atiim Joseph Wiley
  • Patent number: 10328204
    Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: June 25, 2019
    Assignee: DexCom, Inc.
    Inventors: Anna Leigh Davis, Arturo Garcia, Thomas Hall, Hari Hampapuram, Christopher Robert Hannemann, Anna Claire Harley-Trochimczyk, Nathaniel David Heintzman, Andrea J. Jackson, Lauren Hruby Jepson, Apurv Ullas Kamath, Katherine Yerre Koehler, Scott M. Belliveau, Aditya Sagar Mandapaka, Samuel Jere Marsh, Gary A. Morris, Subrai Girish Pai, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Ashley Anne Rindfleisch, Sofie Wells Schunk, Naresh C. Bhavaraju, Peter C. Simpson, Daniel Smith, Stephen J. Vanslyke, Matthew T. Vogel, Tomas C. Walker, Benjamin Elrod West, Atiim Joseph Wiley, Leif N. Bowman, Rita M. Castillo, Alexandra Elena Constantin, Rian Draeger, Laura J. Dunn, Gary Brian Gable
  • Publication number: 20100098814
    Abstract: The present application provides improved sealed packages and improved methods for making sealed packages. The sealed package includes a first side and a second side, wherein the first side and the second side each comprise a laminate material including an product-side layer and a film layer, the product-side layers of the first and second sides at least partially heat sealed together to form a heat seal between the first and second sides such that the heat seal comprises a stress riser, wherein the heat seal is stronger than the bond between the product-side layer and the film layer of the laminate material.
    Type: Application
    Filed: December 30, 2008
    Publication date: April 22, 2010
    Applicant: PRINTPACK ILLINOIS, INC.
    Inventors: Mark G. Frascarelli, Thomas J. Dunn, W. Ben Bower, James Rebholz
  • Patent number: 7268887
    Abstract: Two common-path interferometers share a measuring cavity for measuring opposite sides of opaque test parts. Interference patterns are formed between one side of the test parts and the reference surface of a first of the two interferometers, between the other side of the test parts and the reference surface of a second of the two interferometers, and between the first and second reference surfaces. The latter measurement between the reference surfaces of the two interferometers enables the measurements of the opposite sides of the test parts to be related to each other.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: September 11, 2007
    Assignee: Corning Incorporated
    Inventors: Andrew W. Kulawiec, Mark J. Tronolone, Thomas J. Dunn, Joseph C. Marron
  • Patent number: 7259860
    Abstract: A mode-monitoring system used in connection with discrete beam frequency tunable laser provides optical feedback that can be used for adjusting the laser or for other processing associated with the use of the laser. For example, the output of a frequency tunable source for a frequency-shifting interferometer can be monitored to support the acquisition or processing of more accurate interference data. A first interferometer for taking desired measurements of optical path length differences traveled by different portions of a measuring beam can be linked to a second interferometer for taking measurements of the measuring beam itself. The additional interference data can be interpreted in accordance with the invention to provide measures of beam frequency and intensity.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: August 21, 2007
    Assignee: Corning Incorporated
    Inventors: Joseph Marron, Nestor Farmiga, Andrew W. Kulawiec, Thomas J. Dunn
  • Patent number: 7209499
    Abstract: A frequency tuning system for a laser includes mode-matched lasing and feedback cavities. A reflective facet of the feedback cavity is adjustable for retroreflecting different feedback frequencies to the lasing cavity without changing a fixed length of the feedback cavity. A selection among resonant frequencies of the feedback cavity provides for tuning the laser through discrete resonant frequencies of the lasing cavity.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: April 24, 2007
    Assignee: Corning Incorporated
    Inventors: Nestor Farmiga, Andrew W. Kulawiec, Joseph Marron, Thomas J. Dunn
  • Patent number: 6781699
    Abstract: A scanning interferometer employs dual interferometer modules at different wavelengths to expand a dynamic range of measurement, a compound probe for measuring multiple surfaces, and a confocal optical system for distinguishing between the surfaces measured by the compound probe. Within the compound probe, miniature optics divide a test beam into two sub-test beams that are focused normal to different test surfaces. Both sub-test beams contain the different wavelengths. A separate interferometer monitors movements of the compound probe for producing absolute measures of the test surfaces.
    Type: Grant
    Filed: October 22, 2002
    Date of Patent: August 24, 2004
    Assignee: Corning-Tropel
    Inventors: Thomas J. Dunn, Andrew W. Kulawiec, Mark J. Tronolone
  • Publication number: 20040075842
    Abstract: A scanning interferometer employs dual interferometer modules at different wavelengths to expand a dynamic range of measurement, a compound probe for measuring multiple surfaces, and a confocal optical system for distinguishing between the surfaces measured by the compound probe. Within the compound probe, miniature optics divide a test beam into two sub-test beams that are focused normal to different test surfaces. Both sub-test beams contain the different wavelengths. A separate interferometer monitors movements of the compound probe for producing absolute measures of the test surfaces.
    Type: Application
    Filed: October 22, 2002
    Publication date: April 22, 2004
    Inventors: Thomas J. Dunn, Andrew W. Kulawiec, Mark J. Tronolone
  • Patent number: 6312134
    Abstract: The invention is a seamless projection lithography system that eliminates the need for masks through the use of a programmable Spatial Light Modulator (SLM) with high parallel processing power. Illuminating the SLM with a radiation source (1), which while preferably a pulsed laser may be a shuttered lamp or multiple lasers with alternating synchronization, provides a patterning image of many pixels via a projection system (4) onto a substrate (5). The preferred SLM is a Deformable Micromirror Device (3) for reflective pixel selection using a synchronized pulse laser. An alternative SLM is a Liquid Crystal Light Valve (LCLV) (45) for pass-through pixel selection. Electronic programming enables pixel selection control for error correction of faulty pixel elements. Pixel selection control also provides for negative and positive imaging and for complementary overlapping polygon development for seamless uniform dosage.
    Type: Grant
    Filed: January 23, 1999
    Date of Patent: November 6, 2001
    Assignee: Anvik Corporation
    Inventors: Kanti Jain, Thomas J. Dunn, Jeffrey M Hoffman
  • Patent number: 6304316
    Abstract: A projection microlithography system that can pattern very large, curved substrates at very high exposure speeds and any desired image resolution, the substrates being permitted to have arbitrary curvature in two dimensions. The substrate is held rigidly on a scanning stage, on which is also mounted a mask containing the pattern to be formed on the substrate. The mask is imaged on the substrate by a projection subsystem which is stationary and situated above the scanning stage. The mask is illuminated with a polygonal illumination beam which causes a patterned region of similar shape to be imaged on the substrate. Different regions of the substrate are moved in a direction parallel to the direction of the optical axis at the substrate (z-axis) by suitable amounts to keep the segment being exposed within the depth of focus of the imaging lens. The stage is programmed to scan the mask and substrate simultaneously across the polygonal regions so as to pattern the whole mask.
    Type: Grant
    Filed: October 22, 1998
    Date of Patent: October 16, 2001
    Assignee: Anvik Corporation
    Inventors: Kanti Jain, Nestor O. Framiga, Thomas J. Dunn
  • Patent number: 6201597
    Abstract: A large-format substrate patterning system, for microelectronics manufacturing, utilizes a substrate docking fixture to enable relative motion between the substrate stage and the substrate. This enables exposure of a large-format substrate which has been partitioned into different modules where each module contains an entire pattern transferred from a mask. This projection system enables patterning of a large multi-module substrate using a stage whose range of travel is smaller than the size of the substrate and using a mask whose area is smaller than the size of the substrate. This is accomplished by repositioning the substrate to expose each module sequentially In order to reposition the substrate, its location is maintained fixed in space by a substrate docking fixture while the movable stage of the lithography system is repositioned to position a different module of the substrate in the image field of the lithography tool.
    Type: Grant
    Filed: February 5, 1999
    Date of Patent: March 13, 2001
    Assignee: Anvik Corporation
    Inventors: Thomas J. Dunn, Nestor O. Farmiga, Kanti Jain
  • Patent number: 6149856
    Abstract: In making thermoset and photo-set polymer-matrix composite parts, curing is the key process step that transforms the molecular structure of the composite material, stabilizing it in the desired shape. This curing system applies carefully controlled ultraviolet (UV) radiation dosages, appropriately distributed over the entire surface of the composite part, thereby rapidly curing the material while enabling direct monitoring and control of the curing energy. Previous photo-curing methods have applied generalized radiation to a part with conventional UV lamps. We provide great benefits in cure depth, speed and process control by precisely controlling all parameters of UV dosage, by computed control, by markings on the part, or by dynamic feedback control from embedded sensors or non-contact sensors. This system can apply greater radiation dose to areas of increased quantities of resin, such as support ribs, and lesser radiation dose to areas of decreased quantities of resin.
    Type: Grant
    Filed: November 13, 1998
    Date of Patent: November 21, 2000
    Assignee: Anvik Corporation
    Inventors: Marc I. Zemel, Thomas J. Dunn
  • Patent number: 6040552
    Abstract: Economical production of laser-drilled high-precision, ultra-miniature multiple-via-hole patterns is accomplished by multiplexing the homogenized, shaped, nearly-collimated output of a high-power excimer laser into a modular set of condenser lens/mask/projection lens beamlines. A substrate delivery subsystem provides a continuous supply of film substrate segments as blanks during production. Functional modularization permits the building and easy retooling of a hard-tooling multiple-beamline system powered by a high-power laser. Vertical modularization permits the building of a single-beamline soft-tooling pilot system, which may be used to demonstrate a production technique, or may be used for short production runs, and which may later be incremented with additional vertical subassemblies for additional beamlines.
    Type: Grant
    Filed: January 30, 1997
    Date of Patent: March 21, 2000
    Inventors: Kanti Jain, Thomas J. Dunn, Nestor O. Farmiga, Carl Weisbecker, Carl C. Kling
  • Patent number: 6018383
    Abstract: In the manufacturing of flexible, large-area electronic modules such as flat-panel displays (FPDs), the high cost and low yields of currently available patterning equipment represent a significant barrier to cost-effective production. This invention provides a projection imaging system that can pattern very large, flexible substrates at very high exposure speeds with almost any desired image resolution. The master pattern to be imprinted on the substrate is contained on a mask which, similar to the substrate, is made of a flexible material The mask and substrate are scanned by rollers through the object and the image field, respectively, of a 1:1 projection lens. All of the rollers are driven by identical drive systems linked to a common motor; therefore, the scanning of the mask and substrate is perfectly synchronized. Both the mask and the substrate, along with their rollers, are mounted on a linear translation stage.
    Type: Grant
    Filed: August 20, 1997
    Date of Patent: January 25, 2000
    Assignee: Anvik Corporation
    Inventors: Thomas J. Dunn, Nestor O. Farmiga, Marc Zemel, Carl Weisbecker, Kanti Jain
  • Patent number: 5933216
    Abstract: A high-performance projection optical system uses the multiple spectral peaks of an excimer laser system by using an optical dispersive system to physically separate the broadband laser output into separate narrowband beams which can be used for imaging different substrate surfaces simultaneously. The separated narrowband beams are directed along different optical paths and used to illuminate the object planes of different, identical projection lenses. The projection lenses are designed for the narrowed bandwidth corresponding to one spectral peak of the excimer laser rather than the broadband, multiple-peak laser output This dramatically simplifies both the design and the construction of the projection lens, leading to substantial cost-savings.
    Type: Grant
    Filed: October 16, 1997
    Date of Patent: August 3, 1999
    Assignee: Anvik Corporation
    Inventor: Thomas J. Dunn
  • Patent number: 5897986
    Abstract: A large-format substrate patterning system, for microelectronics manufacturing, utilizes a substrate docking fixture to enable relative motion between the substrate stage and the substrate. This enables exposure of a large-format substrate which has been partitioned into different modules where each module contains an entire pattern transferred from a mask. This projection system enables patterning of a large multi-module substrate using a stage whose range of travel is smaller than the size of the substrate and using a mask whose area is smaller than the size of the substrate. This is accomplished by repositioning the substrate to expose each module sequentially. In order to reposition the substrate, its location is maintained fixed in space by a substrate docking fixture while the movable stage of the lithography system is repositioned to position a different module of the substrate in the image field of the lithography tool.
    Type: Grant
    Filed: May 28, 1997
    Date of Patent: April 27, 1999
    Assignee: Anvik Corporation
    Inventors: Thomas J. Dunn, Nestor O. Farmiga, Kanti Jain
  • Patent number: 5730070
    Abstract: An apparatus for introducing gas recirculation into a furnace to control steam temperature includes a hot air chamber for receiving hot air from an air preheater. The hot air chamber has at least one outlet communicating with the interior of the furnace. The apparatus includes a recirculation gas chamber for receiving recirculation gas from a recirculation fan and includes at least one outlet communicating with the interior of the furnace. Each of the chambers is disposed about at least a portion of the circumference of the furnace with one of the chambers disposed above at least a portion of the other. Ducts are provided between the hot air chamber and the air preheater and between the recirculation gas chamber and the recirculation fan to provide communication between the elements. A passageway is disposed between the hot air chamber and the recirculation gas chamber.
    Type: Grant
    Filed: December 22, 1995
    Date of Patent: March 24, 1998
    Assignee: Combustion Engineering, Inc.
    Inventors: Robert C. Kunkel, Thomas J. Dunn, Jr.
  • Patent number: 5654939
    Abstract: A volumetric/planar array structure for detection of low frequency active pulses in shallow water. The structure is such that the array can be repeatedly deployed and retrieved. The invention utilizes folding array arms that are deployed at a pre-selected depth using only gravity once the release mechanism for deployment has been initiated. Rigid vertical support rods attach to all array levels preventing rotation down below the desired horizontal position during operation. Retraction of array arms for array structure retrieval is initiated by activating an electronic underwater release mechanism which then allows compliant rubber members to pull array arms in place. Once the array arms are in place, they are protected by a skid/crash cage fixture and the array structure is then ready for retrieval.
    Type: Grant
    Filed: February 8, 1996
    Date of Patent: August 5, 1997
    Assignee: Hazeltine Corporation
    Inventors: Craig V. Bruengger, Thomas P. Bourgault, Richard R. Meyer, Thomas J. Dunn
  • Patent number: 5555089
    Abstract: The absolute distance measuring interferometer (ADMI) is a multi-pass interferometer which is a resonant cavity consisting of two plane parallel mirrors whose length is referenced to a stabilized laser system. The resonant cavity can be used in order to measure very precisely (to within a fraction of a wavelength) the distance between a reference plane and an object. Due to its multi-pass nature, the length of the cavity can be measured much more accurately than for a conventional interferometer. The optical transmission bandwidth of the resonant cavity is inversely proportional to its length. A direct measure of the transmission bandwidth provides an extremely precise (to within a fraction of a wavelength) absolute measure of the length of the cavity. This eliminates the need for careful alignment during the motion of one of the mirrors of the multi-pass interferometer.
    Type: Grant
    Filed: November 30, 1994
    Date of Patent: September 10, 1996
    Assignee: Anvik Corporation
    Inventors: Thomas J. Dunn, Dharmesh G. Panchal