Patents by Inventor Thomas J. Flaxl

Thomas J. Flaxl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6807400
    Abstract: A batteryless transponder (10) which acquires its supply energy in that it rectifies an RF interrogation pulse transmitted by an interrogation device during a reception phase and that it uses the direct current so obtained to charge a storage device which serves as a supply voltage source during a transmission phase. In response to the reception of the RF interrogation pulse, the transponder transmits the information stored in it, wherein the coil of a tuned circuit serves as an antenna for both the reception of the interrogation pulse and the transmission of the information. The transponder contains a controllable switching device (14, 16, 18, 20, 22) which disconnects the tuned circuit (26) from the supply source during the transmission phase, and connects it to the supply voltage source only for a duration which is short as compared with a quarter period of the resonant oscillations, depending on the occurrence of each oscillation minimum of the resonant oscillations.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: October 19, 2004
    Assignee: Texas Instruments Deutschland GmbH
    Inventor: Thomas J. Flaxl
  • Publication number: 20020160713
    Abstract: A batteryless transponder (10) which acquires its supply energy in that it rectifies an RF interrogation pulse transmitted by an interrogation device during a reception phase and that it uses the direct current so obtained to charge a storage device which serves as a supply voltage source during a transmission phase. In response to the reception of the RF interrogation pulse, the transponder transmits the information stored in it, wherein the coil of a tuned circuit serves as an antenna for both the reception of the interrogation pulse and the transmission of the information. The transponder contains a controllable switching device (14, 16, 18, 20, 22) which disconnects the tuned circuit (26) from the supply source during the transmission phase, and connects it to the supply voltage source only for a duration which is short as compared with a quarter period of the resonant oscillations, depending on the occurrence of each oscillation minimum of the resonant oscillations.
    Type: Application
    Filed: April 8, 2002
    Publication date: October 31, 2002
    Inventor: Thomas J. Flaxl
  • Patent number: 6118189
    Abstract: An electronic system 8 is disclosed herein. The system includes circuitry 10 for processing a signal and a plurality of antennas 12a-12b. A plurality of switches 22a-22b are also included. Each of the switches 22a-22b is coupled between the processing circuitry 10 and a corresponding one of the antennas 12a-12b. Each of the switches 22a-22b includes first and second power MOSFETs where the source of the first MOSFET is coupled to the source of the second MOSFET. The system further includes circuitry 28 for selecting of one of the plurality of switches 22a-22b to be on.
    Type: Grant
    Filed: November 6, 1997
    Date of Patent: September 12, 2000
    Assignee: Texas Instruments Deutschland, DmbH
    Inventor: Thomas J. Flaxl
  • Patent number: 5621396
    Abstract: A method and apparatus with adaptive transponder plucking is provided in which oscillations from a resonant circuit (12 and 14) are maintained by coupling power from a capacitor (18) through a switch (26) to the resonant circuit (12 and 14). The switch (26) is controlled by adaptive pluck circuitry. The adaptive pluck circuitry includes peak level detector (22) and comparator (24). When the peak level of an oscillating signal from the resonant circuit (12 and 14) falls below a reference voltage, the switch (26) is activated to couple power to the resonant circuit (12 and 14).
    Type: Grant
    Filed: June 30, 1994
    Date of Patent: April 15, 1997
    Assignee: Texas Instruments Incorporated
    Inventor: Thomas J. Flaxl
  • Patent number: 5550536
    Abstract: A transponder system (10) includes an interrogation unit (12) that transmits a first frequency F1 representing a binary zero, and a second frequency F2, representing a binary one. These signals are transmitted from an interrogator resonant circuit (22) within a radio frequency module (16). The transponder system (10) also includes a transponder unit (14) that receives a transmit frequency signal (51) from the interrogation unit (12) at a transponder resonant circuit (42). The transponder resonant circuit (42) is tuned to the first frequency F1 and the second frequency F2. A transponder control module (44) detects a change in the transmit frequency signal (51) from the interrogation unit (12) by a decrease in the voltage amplitude with the transponder resonant circuit (42).
    Type: Grant
    Filed: August 17, 1994
    Date of Patent: August 27, 1996
    Assignee: Texas Instruments Deutschland GmbH
    Inventor: Thomas J. Flaxl
  • Patent number: 5491715
    Abstract: A method of matching the resonant frequency of an antenna resonant circuit (18, 46) to the output frequency of a transmitter output stage (26), the method includes the step of providing a powering signal from the transmitter output stage (26) to the antenna resonant circuit (18, 46). The method further includes the step of receiving at the antenna resonant circuit (18, 46) the powering signal, the antenna resonant circuit (18, 46) comprising a tuning circuit (48). The tuning circuit (48) is operable to variably modify the resonant frequency of the resonant circuit (18, 46). At its output the antenna resonant circuit (18, 46) provides a phase correlation signal having a known relationship to the frequency difference between the resonant frequency and the powering signal. A phase comparator (60) then receives the powering signal and the phase correlation signal and correspondingly adjusts the resonant frequency of the resonant circuit (18, 46) based upon the known phase relationship.
    Type: Grant
    Filed: June 28, 1993
    Date of Patent: February 13, 1996
    Assignee: Texas Instruments Deutschland GmbH
    Inventor: Thomas J. Flaxl