Patents by Inventor Thomas J. Mullen

Thomas J. Mullen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11305124
    Abstract: A medical device system and associated method predict a patient response to a cardiac therapy. The system includes for delivering cardiac pacing pulses to a patient's heart coupled to a cardiac sensing module and a cardiac pacing module for generating cardiac pacing pulses and controlling delivery of the pacing pulses at multiple pace parameter settings. An acoustical sensor obtains heart sound signals. A processor is enabled to receive the heart sound signals, derive a plurality of heart sound signal parameters from the heart sound signals, and determine a trend of each of the plurality of heart sound signal parameters with respect to the plurality of pace parameter settings. An external display is configured to present the trend of at least one heart sound parameter with respect to the plurality of pace parameter settings.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: April 19, 2022
    Assignee: Medtronic, Inc.
    Inventors: Xusheng Zhang, Jeffrey M. Gillberg, Thomas J. Mullen
  • Patent number: 11229795
    Abstract: Cardiac resynchronization therapy (CRT) delivered to a heart of a patient may be adjusted based on detection of a surrogate indication of the intrinsic atrioventricular conduction of the heart. In some examples, the surrogate indication is determined to be a sense event of the first depolarizing ventricle of the heart within a predetermined period of time following the delivery of a fusion pacing stimulus to the later depolarizing ventricle. In some examples, the CRT is switched from a fusion pacing configuration to a biventricular pacing configuration if the surrogate indication is not detected, and the CRT is maintained in a fusion pacing configuration if the surrogate indication is detected.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: January 25, 2022
    Assignee: Medtronic, Inc.
    Inventors: Aleksandre Sambelashvili, Thomas J. Mullen, Todd J. Sheldon
  • Publication number: 20210353945
    Abstract: In some examples, controlling delivery of cardiac resynchronization therapy (CRT) includes storing, in a memory of an implantable medical device system and in association with each of a plurality of heart rates, at least one respective value for an interval between an atrial event and a ventricular event. Processing circuitry of the implantable medical device system may determine a heart rate of a patient and select one of the stored values for the interval between the atrial event and the ventricular event associated with the determined heart rate. The processing circuitry may further determine whether to control therapy delivery circuitry of the implantable medical device system to deliver fusion pacing or biventricular pacing, based on the selected one of the stored values for the interval between the atrial event and the ventricular event.
    Type: Application
    Filed: August 2, 2021
    Publication date: November 18, 2021
    Inventors: Nathan A. Grenz, Thomas J. Mullen
  • Patent number: 11077306
    Abstract: In some examples, controlling delivery of cardiac resynchronization therapy (CRT) includes storing, in a memory of an implantable medical device system and in association with each of a plurality of heart rates, at least one respective value for an interval between an atrial event and a ventricular event. Processing circuitry of the implantable medical device system may determine a heart rate of a patient and select one of the stored values for the interval between the atrial event and the ventricular event associated with the determined heart rate. The processing circuitry may further determine whether to control therapy delivery circuitry of the implantable medical device system to deliver fusion pacing or biventricular pacing, based on the selected one of the stored values for the interval between the atrial event and the ventricular event.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: August 3, 2021
    Assignee: Medtronic, Inc.
    Inventors: Nathan A. Grenz, Thomas J. Mullen
  • Publication number: 20200046984
    Abstract: Cardiac resynchronization therapy (CRT) delivered to a heart of a patient may be adjusted based on detection of a surrogate indication of the intrinsic atrioventricular conduction of the heart. In some examples, the surrogate indication is determined to be a sense event of the first depolarizing ventricle of the heart within a predetermined period of time following the delivery of a fusion pacing stimulus to the later depolarizing ventricle. In some examples, the CRT is switched from a fusion pacing configuration to a biventricular pacing configuration if the surrogate indication is not detected, and the CRT is maintained in a fusion pacing configuration if the surrogate indication is detected.
    Type: Application
    Filed: October 18, 2019
    Publication date: February 13, 2020
    Inventors: Aleksandre Sambelashvili, Thomas J. Mullen, Todd J. Sheldon
  • Publication number: 20190381315
    Abstract: A medical device system and associated method predict a patient response to a cardiac therapy. The system includes for delivering cardiac pacing pulses to a patient's heart coupled to a cardiac sensing module and a cardiac pacing module for generating cardiac pacing pulses and controlling delivery of the pacing pulses at multiple pace parameter settings. An acoustical sensor obtains heart sound signals. A processor is enabled to receive the heart sound signals, derive a plurality of heart sound signal parameters from the heart sound signals, and determine a trend of each of the plurality of heart sound signal parameters with respect to the plurality of pace parameter settings. An external display is configured to present the trend of at least one heart sound parameter with respect to the plurality of pace parameter settings.
    Type: Application
    Filed: August 26, 2019
    Publication date: December 19, 2019
    Inventors: Xusheng Zhang, Jeffrey M. Gillberg, Thomas J. Mullen
  • Patent number: 10449368
    Abstract: Cardiac resynchronization therapy (CRT) delivered to a heart of a patient may be adjusted based on detection of a surrogate indication of the intrinsic atrioventricular conduction of the heart. In some examples, the surrogate indication is determined to be a sense event of the first depolarizing ventricle of the heart within a predetermined period of time following the delivery of a fusion pacing stimulus to the later depolarizing ventricle. In some examples, the CRT is switched from a fusion pacing configuration to a biventricular pacing configuration if the surrogate indication is not detected, and the CRT is maintained in a fusion pacing configuration if the surrogate indication is detected.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: October 22, 2019
    Assignee: Medtronic, Inc.
    Inventors: Aleksandre T. Sambelashvili, Thomas J. Mullen, Todd J. Sheldon
  • Patent number: 10391316
    Abstract: A medical device system and associated method predict a patient response to a cardiac therapy. The system includes for delivering cardiac pacing pulses to a patient's heart coupled to a cardiac sensing module and a cardiac pacing module for generating cardiac pacing pulses and controlling delivery of the pacing pulses at multiple pace parameter settings. An acoustical sensor obtains heart sound signals. A processor is enabled to receive the heart sound signals, derive a plurality of heart sound signal parameters from the heart sound signals, and determine a trend of each of the plurality of heart sound signal parameters with respect to the plurality of pace parameter settings. An external display is configured to present the trend of at least one heart sound parameter with respect to the plurality of pace parameter settings.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: August 27, 2019
    Assignee: Medtronic, Inc.
    Inventors: Xusheng Zhang, Jeffrey M Gillberg, Thomas J Mullen
  • Publication number: 20180214695
    Abstract: In some examples, controlling delivery of cardiac resynchronization therapy (CRT) includes storing, in a memory of an implantable medical device system and in association with each of a plurality of heart rates, at least one respective value for an interval between an atrial event and a ventricular event. Processing circuitry of the implantable medical device system may determine a heart rate of a patient and select one of the stored values for the interval between the atrial event and the ventricular event associated with the determined heart rate. The processing circuitry may further determine whether to control therapy delivery circuitry of the implantable medical device system to deliver fusion pacing or biventricular pacing, based on the selected one of the stored values for the interval between the atrial event and the ventricular event.
    Type: Application
    Filed: January 27, 2017
    Publication date: August 2, 2018
    Inventors: Nathan A. Grenz, Thomas J. Mullen
  • Publication number: 20170239472
    Abstract: A medical device system and associated method predict a patient response to a cardiac therapy. The system includes for delivering cardiac pacing pulses to a patient's heart coupled to a cardiac sensing module and a cardiac pacing module for generating cardiac pacing pulses and controlling delivery of the pacing pulses at multiple pace parameter settings. An acoustical sensor obtains heart sound signals. A processor is enabled to receive the heart sound signals, derive a plurality of heart sound signal parameters from the heart sound signals, and determine a trend of each of the plurality of heart sound signal parameters with respect to the plurality of pace parameter settings. An external display is configured to present the trend of at least one heart sound parameter with respect to the plurality of pace parameter settings.
    Type: Application
    Filed: May 8, 2017
    Publication date: August 24, 2017
    Inventors: Xusheng Zhang, Jeffrey M. Gillberg, Thomas J. Mullen
  • Patent number: 9656079
    Abstract: A method and apparatus are used to provide therapy to a patient experiencing ventricular dysfunction or heart failure. At least one electrode is located in a region associated with nervous tissue, such as nerve bundles T1-T4, in a patient's body. Electrical stimulation is applied to the at least one electrode to improve the cardiac efficiency of the patient's heart. One or more predetermined physiologic parameters of the patient are monitored, and the electrical stimulation is adjusted based on the one or more predetermined physiologic parameters.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: May 23, 2017
    Assignee: Medtronic, Inc.
    Inventors: Michael R. S. Hill, Gary W. King, Thomas J. Mullen, Xiaohong Zhou
  • Patent number: 9643013
    Abstract: Provided herewith are methods and apparatus for optimizing an atrioventricular (AV) pacing delay interval. One manner described involves dynamically programming an AV interval in cardiac resynchronization therapy (CRT) device having a rate-adaptive AV (RAAV) feature in such a way that not less than a minimum AV interval is maintained. That is, the AV interval is not allowed to be reduced so much that the P-wave is truncated by the QRS complex. In this form of the invention, the AV interval is reduced by one millisecond per one bpm increase in heart rate (and vice versa for reducing heart rate) but maintained at a value calculated from the end of the P-wave (PWend) and the beginning of the QRS complex (QRSbeg) or delivery of a ventricular pacing stimulus or to the end of the end of the QRS complex (QRSend).
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: May 9, 2017
    Assignee: Medtronic, Inc.
    Inventors: Aleksandre T Sambelashvili, Thomas J Mullen
  • Patent number: 9643014
    Abstract: A medical device system and associated method predict a patient response to a cardiac therapy. The system includes for delivering cardiac pacing pulses to a patient's heart coupled to a cardiac sensing module and a cardiac pacing module for generating cardiac pacing pulses and controlling delivery of the pacing pulses at multiple pace parameter settings. An acoustical sensor obtains heart sound signals. A processor is enabled to receive the heart sound signals, derive a plurality of heart sound signal parameters from the heart sound signals, and determine a trend of each of the plurality of heart sound signal parameters with respect to the plurality of pace parameter settings. An external display is configured to present the trend of at least one heart sound parameter with respect to the plurality of pace parameter settings.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: May 9, 2017
    Assignee: Medtronic, Inc.
    Inventors: Xusheng Zhang, Jeffrey M. Gillberg, Thomas J. Mullen
  • Patent number: 9597512
    Abstract: Methods for optimizing an atrioventricular (AV) pacing delay interval based upon ECG-based optimization such that an AV pacing delay interval value can be dynamically adjusted in an ambulatory subject. Ends of P-waves are determined. An operating atrioventricular interval is modified to maintain intervals between the determined ends of P-waves and beginnings of corresponding following QRS complexes above a predetermined certain value. The value may be between 30 and 60 milliseconds.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: March 21, 2017
    Assignee: Medtronic, Inc.
    Inventors: Aleksandre T Sambelashvili, Thomas J Mullen
  • Publication number: 20160339255
    Abstract: Cardiac resynchronization therapy (CRT) delivered to a heart of a patient may be adjusted based on detection of a surrogate indication of the intrinsic atrioventricular conduction of the heart. In some examples, the surrogate indication is determined to be a sense event of the first depolarizing ventricle of the heart within a predetermined period of time following the delivery of a fusion pacing stimulus to the later depolarizing ventricle. In some examples, the CRT is switched from a fusion pacing configuration to a biventricular pacing configuration if the surrogate indication is not detected, and the CRT is maintained in a fusion pacing configuration if the surrogate indication is detected.
    Type: Application
    Filed: August 1, 2016
    Publication date: November 24, 2016
    Inventors: Aleksandre T. Sambelashvili, Thomas J. Mullen, Todd J. Sheldon
  • Patent number: 9403019
    Abstract: Cardiac resynchronization therapy (CRT) delivered to a heart of a patient may be adjusted based on detection of a surrogate indication of the intrinsic atrioventricular conduction of the heart. In some examples, the surrogate indication is determined to be a sense event of the first depolarizing ventricle of the heart within a predetermined period of time following the delivery of a fusion pacing stimulus to the later depolarizing ventricle. In some examples, the CRT is switched from a fusion pacing configuration to a biventricular pacing configuration if the surrogate indication is not detected, and the CRT is maintained in a fusion pacing configuration if the surrogate indication is detected.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: August 2, 2016
    Assignee: Medtronic, Inc.
    Inventors: Aleksandre T Sambelashvili, Thomas J Mullen, Todd J Sheldon
  • Patent number: 9375579
    Abstract: A preferred atrial-based pacing method and apparatus is provided using an intelligent cardiac pacing system to having the ability to continue atrial-based pacing as long as relatively reliable AV conduction is present. In the event that such relatively reliable AV conduction is not present, mode switching to a DDD/R or a DDI/R pacing mode while continually biased to mode switch back to atrial-based pacing. The standard or relatively reliable AV conduction may be changed either automatically or manually. This increases pacing that utilizes natural AV conduction however possible so as to gain all the benefits of cardiac contractile properties resulting therefrom, while tolerating the occasional missed ventricular depolarization (i.e., non-conducted P-wave). In the event where relatively reliable AV conduction is not present, the pacing mode is switched to a DDD/R mode while detecting a return of the relatively reliable AV conduction (and resulting mode switch to preferred atrial based pacing).
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: June 28, 2016
    Assignee: Medtronic, Inc.
    Inventors: David A. Casavant, Paul Belk, Thomas J. Mullen, John C. Stroebel
  • Publication number: 20160051821
    Abstract: Provided herewith are methods and apparatus for optimizing an atrioventricular (AV) pacing delay interval. One manner described involves dynamically programming an AV interval in cardiac resynchronization therapy (CRT) device having a rate-adaptive AV (RAAV) feature in such a way that not less than a minimum AV interval is maintained. That is, the AV interval is not allowed to be reduced so much that the P-wave is truncated by the QRS complex. In this form of the invention, the AV interval is reduced by one millisecond per one bpm increase in heart rate (and vice versa for reducing heart rate) but maintained at a value calculated from the end of the P-wave (PWend) and the beginning of the QRS complex (QRSbeg) or delivery of a ventricular pacing stimulus or to the end of the end of the QRS complex (QRSend).
    Type: Application
    Filed: June 24, 2015
    Publication date: February 25, 2016
    Inventors: Aleksandre T. Sambelashvili, Thomas J Mullen
  • Publication number: 20150283385
    Abstract: Provided herewith are methods and apparatus for optimizing an atrioventricular (AV) pacing delay interval based upon ECG-based optimization is calculated as a linear function of P-wave duration, sensed PR (intrinsic) interval, sensed or paced QRS duration and heart rate. Since the relationship among these parameters is linear, once the coefficients are solved (which can be any value, including null) with reference to a known optimized AV interval (AVopt) such as from an echocardiographic study, an AVopt value can be dynamically adjusted in an ambulatory subject. The various combinations of values can be loaded into a look up table or calculated automatically. And, since some of the parameters do not typically change much over time they can be determined acutely and fed into the equation while the other values can be measured frequently. The parameter values can be measured by an implantable medical device such as a dual- or triple-chamber pacemaker.
    Type: Application
    Filed: June 17, 2015
    Publication date: October 8, 2015
    Inventors: Aleksandre T. Sambelashvili, Thomas J. Mullen
  • Patent number: 9095718
    Abstract: A medical device and associated method for controlling a cardiac pacing therapy sense a first cardiac signal including events corresponding to cardiac electrical events and a second cardiac signal including events corresponding to cardiac hemodynamic events. A processor is enabled to measure a cardiac conduction time interval using the first cardiac signal and control a signal generator to deliver a pacing therapy. A pacing control parameter is adjusted to a plurality of settings during the pacing therapy delivery. A hemodynamic parameter value is measured from the second cardiac signal during application of each of the control parameter settings. The processor identifies an optimal setting from the plurality of settings and solves for a patient-specific equation defining the pacing control parameter as a function of the cardiac conduction time interval.
    Type: Grant
    Filed: April 3, 2013
    Date of Patent: August 4, 2015
    Assignee: Medtronic, Inc.
    Inventors: Xusheng Zhang, Paul J DeGroot, Jeffrey M Gillberg, Thomas J Mullen, Aleksandre T Sambelashvili