Patents by Inventor Thomas KALKBRENNER

Thomas KALKBRENNER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10895732
    Abstract: A microscopy method, and a microscope for carrying out the method, in which an illumination radiation is directed through an object arranged in an object plane of a microscope, in order to image the object, image data of a first image of the object being acquired with a first configuration of the microscope and image data of a second image of the object being acquired with a second configuration of the microscope. Differences between the image data of the first image and the second image are determined and, in dependence on the determined differences, image data of a contrast image of the object is provided.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: January 19, 2021
    Assignee: Carl Zeiss Microscopy GmbH
    Inventor: Thomas Kalkbrenner
  • Patent number: 10883940
    Abstract: A fluctuation-based fluorescence microscopy method, comprising influencing a point-spread function of the imaging of a sample emitting fluorescence radiation using an optical device in dependence on a parameter such that a point emitter is imaged into a representation with two image lobes. The relative positions of the lobes depend on the position of the point emitter relative to the focal plane. Synthetic pixels, smaller than detector pixels, are generated; for each synthetic pixel, pairs of pixel groups are defined among pixels of the detector based on the influencing of the point spread function. Each pair is assigned to an individual value of the parameter. In each frame and for each synthetic pixel, a signal correlation is ascertained and allocated as image brightness to the synthetic pixel for the parameter specification. Subframes for each frame are produced from the synthetic pixels, and a high-resolution sample image is produced from the subframes.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: January 5, 2021
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Thomas Kalkbrenner, Yauheni Novikau
  • Publication number: 20200371336
    Abstract: A method for operating a microscopy arrangement, and a microscopy arrangement, having a first microscope and at least one further microscope, wherein each of the microscopes have a respective optical axis. The respective optical axes do not coincide. The method provides a three-dimensional reference coordinate system being set; a carrier apparatus, that is embodied in the arrangement to receive and hold a specimen carrier is introduced into a specimen plane of the first microscope that is intersected by the optical axis and onto the optical axis of the first microscope; a reference point is set on the optical axis of the first microscope; the carrier apparatus is delivered to the further microscope, wherein the current coordinates of the reference point are continuously captured and compared to the coordinates of the optical axis of the at least one further microscope; and the reference point is brought onto the optical axis of the at least one further microscope.
    Type: Application
    Filed: August 11, 2020
    Publication date: November 26, 2020
    Applicant: Carl Zeiss Microscopy GmbH
    Inventors: Thomas KALKBRENNER, Saskia PERGANDE, Jörg SIEBENMORGEN, Helmut LIPPERT
  • Patent number: 10831008
    Abstract: A microscope having an imaging beam path, an illumination beam path, a detection device, and a control device for controlling the detection device and the illumination device. The control device divides the light sources of the detection device in an array into at least a first and a second group, wherein each group is composed of light sources adjacent to each other in the array and covers part of the array. The control device switches on only one light source of the first group at a point in time and connects the light sources of the first group in a sequence with a clocking in such a way that two light sources switched on one after the other are adjacent to each other in the array and switches the light sources of the second group with the same clocking as the light sources of the first group. The control device reads out the detection device with the same clocking as the connecting of the light sources.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: November 10, 2020
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Ingo Kleppe, Thomas Kalkbrenner
  • Publication number: 20200310095
    Abstract: A microscopy method, and related microscope, including producing illumination radiation and directing it at a focus. The illumination radiation is switched temporally between at least two modes, such that focus modulation is effected at which temporally varying and mutually different mode fields of the illumination radiation are produced in the focus. The focus is guided at least over regions of a sample to be examined, wherein detection radiation in the sample is or may be brought about by the illumination radiation in the focus at least at a point of origin. The detection radiation is captured in a manner assigned to the at least one point of origin. In addition to the illumination radiation, at least one disexcitation beam of rays of disexcitation radiation is directed at the focus. The disexcitation radiation prevents the detection radiation from being brought about in the region that is illuminated by the disexcitation radiation.
    Type: Application
    Filed: June 21, 2017
    Publication date: October 1, 2020
    Applicant: CARL ZEISS MICROSOPY GMBH
    Inventors: Ralf Netz, Thomas KALKBRENNER, Tiemo ANHUT
  • Publication number: 20200300765
    Abstract: The invention relates to a localization microscopy method for localizing signal sources. Here, at least once for each pixel of a detector, values of an error parameter are ascertained and stored in a calibration data record in a manner assigned to the relevant pixel. Captured image data are used to identify regions of origin of signal sources and fit a point spread function to the pixel values of the respective regions of origin. The respective signal source is localized on the basis of the point spread function. The pixel-specific error parameter of each pixel can be compared to a threshold. If the threshold is exceeded, these pixels are either ignored or replaced by means of interpolation when fitting the point spread function. In addition or as an alternative thereto, the real noise performance of the pixels is ascertained and corrected on the basis of derived pixel-specific error parameters.
    Type: Application
    Filed: March 20, 2020
    Publication date: September 24, 2020
    Inventors: Thomas Kalkbrenner, Yauheni Novikau, Martin Beck
  • Patent number: 10775601
    Abstract: A method for operating a microscopy arrangement, and a microscopy arrangement, having a first microscope and at least one further microscope, wherein each of the microscopes have a respective optical axis. The respective optical axes do not coincide. The method provides a three-dimensional reference coordinate system being set; a carrier apparatus, that is embodied in the arrangement to receive and hold a specimen carrier is introduced into a specimen plane of the first microscope that is intersected by the optical axis and onto the optical axis of the first microscope; a reference point is set on the optical axis of the first microscope; the carrier apparatus is delivered to the further microscope, wherein the current coordinates of the reference point are continuously captured and compared to the coordinates of the optical axis of the at least one further microscope; and the reference point is brought onto the optical axis of the at least one further microscope.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: September 15, 2020
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Thomas Kalkbrenner, Saskia Pergande, Jörg Siebenmorgen, Helmut Lippert
  • Publication number: 20200284715
    Abstract: A method for optically examining a plurality of microscopic samples. The samples are channeled one after the other by means of a flow into at least one flow channel in which the samples advance along a flow direction. The samples are illuminated, and light emitted from the samples is detected and analyzed. A device for carrying out the method in which samples are illuminated in that at least one light sheet with a light sheet plane is directed onto the at least one flow channel, wherein the light sheet is oriented so as to intersect the at least one flow channel in an intersection region, and the normal of the light sheet plane forms an angle differing from null together with the flow direction in the intersection region. The light emitted from the sample is registered by an imaging optical detection unit, and the focal plane of said optical detection unit lies in the intersection region.
    Type: Application
    Filed: September 25, 2018
    Publication date: September 10, 2020
    Applicant: Carl Zeiss Microscopy GmbH
    Inventors: Thomas KALKBRENNER, Joerg SIEBENMORGEN, Thomas OHRT
  • Publication number: 20200271912
    Abstract: An optical lens for use in a media feed device, having a first lens surface and a second lens surface, wherein the first lens is provided to be facing an object to be observed and the second lens surface is provided to be facing away from the object to be observed. At least one channel opening onto the first lens surface is present, wherein the channel runs through the optical lens and at least one section of a media line is formed in the channel. The channel or, if a plurality of channels are formed, at least one of the present channels opens up outside a highest point in vertical alignment of the first lens surface.
    Type: Application
    Filed: September 28, 2018
    Publication date: August 27, 2020
    Applicant: Carl Zeiss Microscopy GmbH
    Inventors: Saskia PERGANDE, Peter SCHACHT, Andreas MÖBIUS, Jörg SIEBENMORGEN, Thomas KALKBRENNER
  • Publication number: 20200264422
    Abstract: A microscopy method, and a microscope for carrying out the method, in which an illumination radiation is directed through an object arranged in an object plane of a microscope, in order to image the object, image data of a first image of the object being acquired with a first configuration of the microscope and image data of a second image of the object being acquired with a second configuration of the microscope. Differences between the image data of the first image and the second image are determined and, in dependence on the determined differences, image data of a contrast image of the object is provided.
    Type: Application
    Filed: November 4, 2016
    Publication date: August 20, 2020
    Inventor: DR. THOMAS KALKBRENNER
  • Patent number: 10712553
    Abstract: An arrangement, for light sheet microscopy, including: a sample vessel, for receiving a medium containing a sample, oriented with respect to a plane reference surface; illumination optics with an illumination objective for illuminating the sample with a light sheet; and detection optics with a detection objective. The optical axis of the illumination objective and the light sheet lies in a plane which forms a nonzero illumination angle with the normal of the reference surface. The detection objective has an optical axis that forms a nonzero detection angle with the normal of the reference surface. The arrangement also includes a separating-layer system for separating the sample-containing medium from the illumination and detection objectives. The separating-layer system contacts the medium with an interface parallel to the reference surface. The illumination angle and detection angle are predetermined based on numerical apertures of the detection objective and of the illumination objective, respectively.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: July 14, 2020
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Jörg Siebenmorgen, Thomas Kalkbrenner, Helmut Lippert
  • Publication number: 20200150044
    Abstract: A fluctuation-based fluorescence microscopy method, comprising influencing a point-spread function of the imaging of a sample emitting fluorescence radiation using an optical device in dependence on a parameter such that a point emitter is imaged into a representation with two image lobes. The relative positions of the lobes depend on the position of the point emitter relative to the focal plane. Synthetic pixels, smaller than detector pixels, are generated; for each synthetic pixel, pairs of pixel groups are defined among pixels of the detector based on the influencing of the point spread function. Each pair is assigned to an individual value of the parameter. In each frame and for each synthetic pixel, a signal correlation is ascertained and allocated as image brightness to the synthetic pixel for the parameter specification. Subframes for each frame are produced from the synthetic pixels, and a high-resolution sample image is produced from the subframes.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 14, 2020
    Inventors: Thomas KALKBRENNER, Yauheni NOVIKAU
  • Patent number: 10649194
    Abstract: An arrangement and method for supplying immersion media and a method for setting optical parameters of a medium, includes a media supply unit for the controlled supply of a medium or of a mixture into a contact region between an optical lens and a specimen slide, on which a specimen may be arranged. An image capture unit is provided for capturing image data on the basis of detection radiation from the object space along a detection beam path extending through the contact region. An evaluation unit is provided to establish current image parameters on the basis of captured image data, to compare said current image parameters to intended image parameters and to establish a desired mixing ratio of at least two components of the medium depending on the comparison.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: May 12, 2020
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Thomas Kalkbrenner, Sebastian Borck, Jörg Siebenmorgen
  • Patent number: 10642015
    Abstract: A light sheet microscope which includes an illumination apparatus generating coherent illumination light for several illumination wavelengths, a beam-shaping module generating a light sheet from illumination light, an illumination objective illuminating a specimen with the light sheet and a detection objective for imaging light which is emitted by the specimen onto a laminar detector, wherein the optical axes of the detection objective and of the illumination objective are not parallel to each other. In such a light sheet microscope, the beam-shaping module includes a phase-selective element with several selection areas separated from each other spatially, wherein in each case one selection area is assigned to one specific illumination wavelength, and wherein a phase distribution predefined for the respective illumination wavelength is impressed on each selection area.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: May 5, 2020
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Helmut Lippert, Tobias Kaufhold, Thomas Kalkbrenner, Joerg Siebenmorgen
  • Patent number: 10645247
    Abstract: A microscope for raster-free, confocal imaging of a sample arranged in a sample space has an illumination arrangement comprising a light source group having light sources which can be switched on individually, a detector arrangement, a pinhole arrangement which comprises a pinhole array and which has a plurality of pinhole elements which are adjacent to one another, wherein there is one pinhole element provided for each light source, and optics which irradiate each pinhole element with radiation of an individual light source of the light source group and confocally illuminate an individual spot located in the sample space, wherein one of the individual spots is associated with each pinhole element, and the individual spots are adjacent to one another in the sample space with respect to an incidence direction of the radiation, and the optics image the individual spots through the pinhole arrangement confocally on the detector arrangement.
    Type: Grant
    Filed: May 28, 2018
    Date of Patent: May 5, 2020
    Assignee: Carl Zeiss Microscopy GmbH
    Inventor: Thomas Kalkbrenner
  • Patent number: 10620419
    Abstract: An arrangement for light sheet microscopy including: a sample vessel, for receiving a medium containing sample, having a covering and being oriented with respect to a planar reference surface; illumination optics with an illumination objective for illuminating the sample with a light sheet; and detection optics with a detection objective. The optical axis of the illumination objective and the light sheet lies in a plane that forms a nonzero illumination angle with the normal of the reference surface. The optical axis of the detection objective forms a nonzero detection angle with the normal of the reference surface. A bulge is formed at the covering for receiving the sample. The bulge has inner and outer interfaces. The optical axes of the illumination objective and detection objective form a minimal angle with the normals of the interfaces at least in the region where the optical axes pass through the interfaces.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: April 14, 2020
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Jörg Siebenmorgen, Thomas Kalkbrenner, Helmut Lippert
  • Publication number: 20200096752
    Abstract: The invention relates to an illumination apparatus for a microscope, a microscope and a method for operating the illumination apparatus. The illumination apparatus has a sample space for holding a sample that is to be illuminated, and at least one laser light source. An objective for the directional emission of laser radiation of a first wavelength along a first optical axis that is directed into the sample space, and with a cover of the sample space by which the sample space is delimited at least on one of its sides. The cover further has a layer that is either impenetrable for the laser radiation over a blocking angle range of the illumination angle and is transmissive for radiation of a second wavelength over a transmitted light angle range, or has a controllable layer that, in a first control state, is transparent for radiation of the second wavelength and, in a second control state, is impenetrable for the laser radiation of the first wavelength.
    Type: Application
    Filed: September 18, 2019
    Publication date: March 26, 2020
    Applicant: Carl Zeiss Microscopy GmbH
    Inventors: Thomas Kalkbrenner, Jakob Haarstrich, Jörg Siebenmorgen, Andreas Möbius
  • Publication number: 20200090399
    Abstract: A localization microscope comprising an imaging device emitting sample light from a focal plane into an image plane, comprising an optical-manipulation device for depth-dependent influencing of a point-spread function of the imaging and influencing the point-spread function of the imaging such that a point emitter is imaged in the image plane into an image that is rotationally asymmetrically distorted. A form of the distortion depends on the location of the point emitter with respect to the focal plane and a wavelength of the sample light. The optical manipulation device comprises first and second anisotropy elements that anisotropically influence the point spread function to produce rotational asymmetry of the point emitter image. The elements are arranged one behind the other in the imaging direction, with anisotropy axes at an angle to one another. Both elements have differing neutral wavelength at which they do not anisotropically influence the point spread.
    Type: Application
    Filed: September 17, 2019
    Publication date: March 19, 2020
    Inventors: Thomas KALKBRENNER, Michael GOELLES
  • Patent number: 10539505
    Abstract: In a method for creating a digital fluorescent image, the light emitted per pixel from an object plane is converted into a sequence of amplitudes, each of which is associated with one specific measurement time, the sequence of amplitudes is auto-correlated in a manner that is delayed by at least one time offset, and a specific correlation amplitude, from which a total amplitude is determined, is formed for each of the time offsets.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: January 21, 2020
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Thomas Kalkbrenner, Ralf Wolleschensky
  • Patent number: 10477124
    Abstract: A device and a method for imaging a sample arranged in an object plane. The device includes an optical relay system that images an area of the sample from the object plane into an intermediate image plane. The device may also include an optical imaging system with an objective having an optical axis that lies perpendicularly on the intermediate image plan, and which is focused on the intermediate image plane, with the result that the object plane can be imaged undistorted onto a detector. The device also can include an illumination apparatus for illuminating the sample with a light sheet, wherein the light sheet lies essentially in the object plane and defines an illumination direction, and wherein the normal of the object plane defines a detection direction.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: November 12, 2019
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Helmut Lippert, Thomas Kalkbrenner, Ingo Kleppe, Joerg Siebenmorgen, Ralf Wolleschensky