Patents by Inventor Thomas P. Klun

Thomas P. Klun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12247001
    Abstract: Compound are described comprising a perfluorinated group bonded to at least one terminal photoinitiator group with an organic linking group comprising at least one amide moiety. The compound typically comprises the (e.g. Michael addition) reaction product of i) a compound comprising an acryl group and a photoinitiator group; and ii) an amino functional perfluorinated compound. Also described is a composition comprising at least one free-radically polymerizable (e.g. fluorinated) monomer, oligomer, or combination thereof; and the described fluorinated photoinitiator compound and methods.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: March 11, 2025
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas P. Klun, Brandon R. Pietz, Paul J. Homnick, Christopher S. Lyons, Chad M. Amb
  • Patent number: 12214564
    Abstract: An optical assembly (200) including an encapsulated multilayer optical film (250). Methods of making and using such optical assemblies also are disclosed.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: February 4, 2025
    Assignee: 3M Innovative Properties Company
    Inventors: Gregg A. Ambur, Douglas S. Dunn, Henry A. Kostalik, IV, Christopher S. DeGraw, Thomas P. Klun, Benjamin R. Coonce, Richard J. Pokorny, Chunjie Zhang, Laurent Froissard, Joseph S. Warner
  • Publication number: 20250009479
    Abstract: The present disclosure provides a method of making an orthodontic article. The method includes (a) providing a photopolymerizable composition; (b) selectively curing the photopolymerizable composition using actinic radiation to form an article in the shape of an orthodontic article including a number of layers of at least one photopolymerized polymer; and (c) moving the article and thereby generating a mass inertial force in the uncured photopolymerizable composition. The article has a first surface, and no more than 75% of the first surface has a slope magnitude greater than 2.5 degrees. Orthodontic articles are also provided, including an orthodontic article that is prepared according to the method. Orthodontic articles having low extractable component content are further provided. The mass inertial force tends to form a coating layer of uncured photopolymerizable composition on the article, and curing the coating layer can form a surface having low slope magnitude.
    Type: Application
    Filed: September 20, 2024
    Publication date: January 9, 2025
    Inventors: Saswata Chakraborty, Benjamin C. Mac Murray, James D. Hansen, Karl J.L. Geisler, Thomas P. Klun, Daniel J. Skamser, John M. Riedesel, Steven H. Kong, Anja Friedrich
  • Publication number: 20250004373
    Abstract: Free-radically polymerizable compounds having a poly(diakylsiloxane) segment and at least one acryl group are disclosed. Compositions including the same, polymerized compounds, methods of making and articles including the same are also disclosed.
    Type: Application
    Filed: November 11, 2022
    Publication date: January 2, 2025
    Inventors: Thomas P. Klun, Matthew R.D. Smith
  • Publication number: 20240417245
    Abstract: A nanostructured article includes a substrate; a plurality of first nanostructures disposed on, and extending away from, the substrate; and a covalently crosslinked fluorinated polymeric layer disposed on the plurality of first nanostructures. The plurality of first nanostructures includes polyurethane. The polymeric layer at least partially fills spaces between the first nanostructures to an average minimum height above the substrate of at least 30 nm such that the polymeric layer has a nanostructured surface defined by, and facing away from, the plurality of first nanostructures.
    Type: Application
    Filed: August 28, 2024
    Publication date: December 19, 2024
    Inventors: David S. Thompson, Chad M. Amb, Moses M. David, Richard J. Pokorny, Thomas P. Klun, Jonah Shaver, Joan M. Noyola, Hannah E. Walsh, Jon P. Nietfeld, John A. Wheatley, Joseph D. Rule, Ryan M. Braun, Michael A. Johnson
  • Patent number: 12161013
    Abstract: The present disclosure provides an article including a layer having a nanostructured first surface including nanofeatures and an opposing second surface, and an organic layer including a major surface attached to a portion of the nanofeatures. The nanostructured first surface includes protruding features that are formed of a single composition and/or recessed features. The nanofeatures and the major surface of the second layer together define at least one void. The present disclosure also provides a method of making the article including contacting nanofeatures of a layer having a nanostructured surface with a major surface of an organic layer and reacting at least one material to secure the two layers together. In addition, the present disclosure provides an optical information display and an OLED device including the article. The nanostructured surface of the article is protected from damage and contamination by the organic layer.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: December 3, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Jeffrey L. Solomon, Henrik B. van Lengerich, Bryan V. Hunt, Tabitha A Silliman, William Blake Kolb, Nicholas C. Erickson, Stephen M. Menke, Derek W. Patzman, Justin P Meyer, Bert T. Chien, Thomas E. Muehle, Thomas P. Klun
  • Patent number: 12121413
    Abstract: The present disclosure provides a method of making an orthodontic article. The method includes (a) providing a photopolymerizable composition; (b) selectively curing the photopolymerizable composition using actinic radiation to form an article in the shape of an orthodontic article including a number of layers of at least one photopolymerized polymer; and (c) moving the article and thereby generating a mass inertial force in the uncured photopolymerizable composition. The article has a first surface, and no more than 75% of the first surface has a slope magnitude greater than 2.5 degrees. Orthodontic articles are also provided, including an orthodontic article that is prepared according to the method. Orthodontic articles having low extractable component content are further provided. The mass inertial force tends to form a coating layer of uncured photopolymerizable composition on the article, and curing the coating layer can form a surface having low slope magnitude.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: October 22, 2024
    Assignee: Solventum Intellectual Properties Company
    Inventors: Saswata Chakraborty, Benjamin C. MacMurray, James D. Hansen, Karl J. L. Geisler, Thomas P. Klun, Daniel J. Skamser, John M. Riedesel, Steven H. Kong, Anja Friedrich
  • Patent number: 12103846
    Abstract: A nanostructured article includes a substrate; a plurality of first nanostructures disposed on, and extending away from, the substrate; and a covalently crosslinked fluorinated polymeric layer disposed on the plurality of first nanostructures. The plurality of first nanostructures includes polyurethane. The polymeric layer at least partially fills spaces between the first nanostructures to an average minimum height above the substrate of at least 30 nm such that the polymeric layer has a nanostructured surface defined by, and facing away from, the plurality of first nanostructures.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: October 1, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: David S. Thompson, Chad M. Amb, Moses M. David, Richard J. Pokorny, Thomas P. Klun, Jonah Shaver, Joan M. Noyola, Hannah E. Walsh, Jon P. Nietfeld, John A. Wheatley, Joseph D. Rule, Ryan M. Braun, Michael A. Johnson
  • Publication number: 20240270893
    Abstract: The present disclosure provides an orthodontic article including the reaction product of the polymerizable composition. Further, the present disclosure provides polymerizable compositions and methods of making an orthodontic article. The method includes obtaining a polymerizable composition and selectively curing the polymerizable composition to form an orthodontic article. Further, methods are provided, including receiving, by a manufacturing device having one or more processors, a digital object comprising data specifying an orthodontic article; and generating, with the manufacturing device by an additive manufacturing process, the orthodontic article based on the digital object. A system is also provided, including a display that displays a 3D model of an orthodontic article; and one or more processors that, in response to the 3D model selected by a user, cause a 3D printer to create a physical object of an orthodontic article.
    Type: Application
    Filed: February 7, 2024
    Publication date: August 15, 2024
    Inventors: Thomas P. Klun, Zeba Parkar, John M. Riedesel, Richard J. Pokorny, Chad M. Amb, Benjamin R. Coonce, Robert S. Clough, Tianyu Wu, Saswata Chakraborty, Yongshang Lu, Benjamin C. Mac Murray, Ahmed S. Abuelyaman, Karl J.L. Geisler, Jodi L. Connell, Ta-Hua Yu
  • Patent number: 12053945
    Abstract: A method of making a shaped abrasion-resistant multilayer optical film includes providing a curable composition comprising, based on the total weight of components a) to d) components: a) 87 to 96 weight percent of urethane (meth)acrylate compound having an average (meth)acrylate functionality of 2 to 4.8; b) 2 to 12.5 weight percent of (meth)acrylate monomer having a (meth)acrylate functionality of 1 to 2, wherein the (meth)acrylate monomer does not comprise a urethane (meth)acrylate compound; optionally c) 0.5 to 2 weight percent of silicone (meth)acrylate; and d) optional effective amount of photoinitiator. The curable composition is coated onto an MOF. Optionally, the curable composition to is at least partially dried. Next, the curable composition or the at least partially dried curable composition is at least partially cured to provide an abrasion-resistant multilayer optical film. Lastly, the abrasion-resistant multilayer optical film is thermoformed using a female mold having a mold surface.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: August 6, 2024
    Assignee: 3M Innovative Properties Company
    Inventors: Benjamin R. Coonce, Richard J. Pokorny, Thomas P. Klun, Chunjie Zhang, Gregg A. Ambur, Benjamin G. Sonnek, Daniel J. Richter, Jung-Sheng Wu
  • Publication number: 20240228376
    Abstract: A wall compound for use in all applications and particularly well-suited indicating dryness with a durable, visible change in color.
    Type: Application
    Filed: May 12, 2022
    Publication date: July 11, 2024
    Inventors: Lan H. Liu, Richard J. Pokorny, Thomas P. Klun, Yong K. Wu, Bathsheba E.F. Chong Conklin
  • Patent number: 11945900
    Abstract: The present disclosure provides an orthodontic article including the reaction product of the polymerizable composition. Further, the present disclosure provides polymerizable compositions and methods of making an orthodontic article. The method includes obtaining a polymerizable composition and selectively curing the polymerizable composition to form an orthodontic article. Further, methods are provided, including receiving, by a manufacturing device having one or more processors, a digital object comprising data specifying an orthodontic article; and generating, with the manufacturing device by an additive manufacturing process, the orthodontic article based on the digital object. A system is also provided, including a display that displays a 3D model of an orthodontic article; and one or more processors that, in response to the 3D model selected by a user, cause a 3D printer to create a physical object of an orthodontic article.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: April 2, 2024
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas P. Klun, Zeba Parkar, John M. Riedesel, Richard J. Pokorny, Chad M. Amb, Benjamin R. Coonce, Robert S. Clough, Tianyu Wu, Saswata Chakraborty, Yongshang Lu, Benjamin C. MacMurray, Ahmed S. Abuelyaman, Karl J. L. Geisler, Jodi L. Connell, Ta-Hua Yu
  • Patent number: 11912801
    Abstract: A curable composition is provided comprising a urethane (meth)acrylate oligomer, a urethane (urea) phosphonate ad-hesion promoter, optionally reactive diluents, and an initiator. The use of the urethane (urea) phosphonate adhesion promotor provides better ageing stability and adhesion, as measured by T-peel adhesion test, than the use of other conventional adhesion promotors.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: February 27, 2024
    Assignee: 3M Innovative Properties Company
    Inventors: Ying Lin, Sheng Ye, Thomas P. Klun, Semra Colak Atan, Jerald K. Rasmussen
  • Patent number: 11904031
    Abstract: An orthodontic article is described comprising the reaction product of a free-radically polymerizable resin; a first free-radical photoinitiator having sufficient absorbance at a first wavelength range; and a second free-radical initiator selected from a second photoinitiator having sufficient absorbance at a second wavelength range, wherein the second wavelength range is different than the first wavelength range, or a thermal free-radical initiator. In some embodiments, the first free-radical photoinitiator exhibits a maximum absorbance at a wavelength of the range of 370-380 nm or 320-330 nm and/or comprises photoinitiator groups selected from acyl phosphine oxide or alkyl amine acetophenone. Also described are photopolymerizable compositions and methods.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: February 20, 2024
    Assignee: 3M Innovative Properties Company
    Inventors: Saswata Chakraborty, Benjamin C. MacMurray, Eric W. Nelson, Thomas P. Klun, Richard J. Pokorny, Wayne S. Mahoney, Chad M. Amb, George W. Griesgraber, Dana R. Reed, Ahmed S. Abuelyaman, Robert S. Clough, James D. Hansen, Daniel J. Skamser, Ian Dailey, John M. Riedesel
  • Patent number: 11807795
    Abstract: Optical devices comprising at least one optical layer and at least one antistatic layer disposed on at least one surface of the optical layer wherein the antistatic layer comprises the reaction product of: (a) at least one polymerizable onium salt; and (b) at least one polymerizable, non-onium, silicone or perfluoropolyether moiety-containing monomer, oligomer, or polymer.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: November 7, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Bryan V. Hunt, Brandt K. Carter, Maureen C. Nelson, Thomas P. Klun, Jason S. Petaja, Yizhong Wang, Joel D. Oxman
  • Publication number: 20230322966
    Abstract: The present disclosure provides a photopolymerizable composition. The photopolymerizable composition includes a) 40-60 parts by weight of a monofunctional (meth)acrylate monomer, per 100 parts of the total photopolymerizable composition; b) a photoinitiator; and c) a polymerization reaction product of components. A cured homopolymer of the monofunctional (meth)acrylate monomer has a glass transition temperature of 125 degrees Celsius or greater. The polymerization reaction product of components includes i) a diisocyanate; ii) a hydroxy functional methacrylate; iii) a polycarbonate diol; and iv) a catalyst. The polymerization reaction product includes a polyurethane methacrylate polymer.
    Type: Application
    Filed: May 31, 2023
    Publication date: October 12, 2023
    Inventors: Thomas P. Klun, Zeba Parkar, John M. Riedesel, Richard J. Pokorny, Chad M. Amb, Benjamin R. Coonce, Robert S. Clough, Tianyu Wu, Saswata Chakraborty, Yongshang Lu, Benjamin C. Mac Murray
  • Publication number: 20230305210
    Abstract: An optical assembly including an optical element insert molded directly onto an optical stack is provided. The optical stack includes an optical film and may include a liner with the optical film being disposed between the optical element and the liner. The liner, if included, is removable from the optical film without substantial damage to the optical film. An outermost layer of the optical film may be diffusion bonded to a major surface of the optical element.
    Type: Application
    Filed: May 16, 2023
    Publication date: September 28, 2023
    Inventors: Gregg A. Ambur, Benjamin G. Sonnek, Jo A. Etter, Timothy L. Wong, Thomas P. Klun, Richard J. Pokorny, Benjamin R. Coonce, Douglas S. Dunn, Henry A. Kostalik, IV, Christopher S. DeGraw, John R. Jacobson, Chunjie Zhang
  • Patent number: 11752749
    Abstract: A composite article includes a multilayer barrier assembly bonded to a substrate, and a top polymer layer bonded to the multilayer barrier assembly opposite the substrate. The multilayer barrier assembly comprises a base polymer layer and a base inorganic barrier layer. The base polymer layer comprises a polymerized reaction product of polymerizable components comprising at least one di(meth)acrylate represented by the formula Each R1 independently represents H or methyl; each R2 independently represents an alkyl group having from 1 to 4 carbon atoms; x=0, 1, 2, 3, or 4; and z=0, 1, 2, 3, or 4, with the provisos that at least one of x and z is not zero and 1?x+z?4. Methods of making the same are also disclosed.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: September 12, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Robert S. Clough, Joseph C. Spagnola, Christopher S. Lyons, Mark D. Weigel, Thomas P. Klun
  • Publication number: 20230271401
    Abstract: The present disclosure provides an article including a layer having a nanostructured first surface including nanofeatures and an opposing second surface, and an inorganic layer including a major surface bonded to a portion of the nanostructured first surface. The nanostructured first surface includes protruding features that are formed of a single composition and/or recessed features. The article includes at least one enclosed void defined in part by the nanostructured first surface. The present disclosure also provides a method of making the article including treating a major surface of an inorganic layer with a coupling agent, contacting a nanostructured surface of a layer with the treated inorganic layer, and securing the two layers together via a bonded coupling agent by bonding at least one of the nanostructured surface or the treated inorganic layer. In addition, the present disclosure provides an optical element including the article.
    Type: Application
    Filed: July 28, 2021
    Publication date: August 31, 2023
    Inventors: Jeffrey L. Solomon, Christopher S. Lyons, Joseph C. Spagnola, Thomas P. Klun
  • Patent number: 11708428
    Abstract: The present disclosure provides a photopolymerizable composition. The photopolymerizable composition includes a) 40-60 parts by weight of a monofunctional (meth)acrylate monomer, per 100 parts of the total photopolymerizable composition; b) a photoinitiator; and c) a polymerization reaction product of components. A cured homopolymer of the monofunctional (meth)acrylate monomer has a glass transition temperature of 125 degrees Celsius or greater. The polymerization reaction product of components includes i) a diisocyanate; ii) a hydroxy functional methacrylate; iii) a polycarbonate diol; and iv) a catalyst. The polymerization reaction product includes a polyurethane methacrylate polymer. Often, the polyurethane methacrylate polymer has a weight average molecular weight of 8,000 g/mol or greater. The present disclosure further provides an article and methods thereof.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: July 25, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas P. Klun, Zeba Parkar, John M. Riedesel, Richard J. Pokorny, Chad M. Amb, Benjamin R. Coonce, Robert S. Clough, Tianyu Wu, Saswata Chakraborty, Yongshang Lu, Benjamin C. MacMurray