Patents by Inventor Thomas Wehlus

Thomas Wehlus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9978996
    Abstract: In various exemplary embodiments, a method for producing an optoelectronic component is provided. In this case, a high temperature solid is provided which is stable at least up to a predefined first temperature. A liquid glass solder having a second temperature, which is lower than the first temperature, is applied to the high temperature solid in a structured fashion. The glass solder is solidified, as a result of which a glass solid is formed. An optoelectronic layer structure is formed above the glass solid. The glass solid and the optoelectronic layer structure form the optoelectronic component. The optoelectronic component is removed from the high temperature solid.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: May 22, 2018
    Assignee: Osram OLED GmbH
    Inventor: Thomas Wehlus
  • Patent number: 9960381
    Abstract: A lighting device may include a substrate having a carrier, a first electrical busbar, a second electrical busbar, and an optically functional structure on or above the carrier, wherein the optically functional structure is formed laterally between the first and the second electrical busbar, and a first electrode electrically coupled to the first electrical busbar and/or the second electrical busbar, on or above the carrier, and an organic functional layer structure on or above the first electrode, wherein the organic functional layer structure is formed for converting an electric current into an electromagnetic radiation, and a second electrode on or above the organic functional layer structure. The optically functional structure is formed in such a way that the beam path of the electromagnetic radiation which passes through the substrate and/or the spectrum of the electromagnetic radiation passing through the substrate are/is variable by means of the optically functional structure.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: May 1, 2018
    Assignee: OSRAM OLED GMBH
    Inventors: Thomas Wehlus, Daniel Riedel, Nina Riegel, Silke Scharner, Johannes Rosenberger, Arne Fleissner
  • Patent number: 9941486
    Abstract: Various embodiments may relate to a component. The component includes an optically active region designed for electrically controllably transmitting, reflecting, absorbing, emitting and/or converting an electromagnetic radiation, and an optically inactive region formed alongside the optically active region, wherein the optically inactive region and/or the optically active region have/has an adaptation structure designed to adapt the value of an optical variable in the optically inactive region to a value of the optical variable in the optically active region.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: April 10, 2018
    Assignee: OSRAM OLED GMBH
    Inventors: Daniel Riedel, Johannes Rosenberger, Thomas Wehlus, Nina Riegel, Silke Scharner, Arne Fleissner
  • Patent number: 9941487
    Abstract: In various embodiments, glassware is provided. The glassware may include a glass matrix having a surface, a first type of particles, and at least one second type of particles, wherein the particles of the second type have a higher refractive index than the particles of the first type, wherein the particles of the first type are completely surrounded by the glass matrix, such that the surface of the glass matrix is free of particles of the first type, and the particles of the second type are arranged above and/or between the particles of the first type at least partly in the glass matrix at the surface of the glass matrix in order to increase the refractive index of the glassware.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: April 10, 2018
    Assignee: OSRAM OLED GmbH
    Inventor: Thomas Wehlus
  • Publication number: 20180087743
    Abstract: A luminaire includes a surface light source that emits light with a plane, effective emission surface E, from which the light generated in the surface light source is radiated, a reflector configured to suppress glare of the surface light source for emission angles above a glare angle a, with 40°?a?80°, and a plane, effective radiation surface F, from which light emitted by the surface light source emerges from the luminaire, wherein the emission surface is surrounded on all sides by the reflector and the reflector, starting from the emission surface, extends towards the radiation surface, the reflector, in a cross-sectional view perpendicular to the emission surface, is formed concave on average so that a width b of the reflector in a direction away from the emission surface is described by a function f (b) and the first derivative f? (b) thereof increases either strictly monotonically or as an alternative monotonically as well as strictly monotonically in some places in the direction away from the emission
    Type: Application
    Filed: April 7, 2016
    Publication date: March 29, 2018
    Inventor: Thomas Wehlus
  • Publication number: 20180083222
    Abstract: According to the present disclosure, a method for producing an optoelectronic component is provided. The method includes forming an optically functional layer structure in accordance with at least one part of a geometric network of a body, and bending the part of the geometric network in the at least one desired bending region, such that at least one part of the body is formed. The part of the geometric network includes at least one desired bending region.
    Type: Application
    Filed: March 15, 2016
    Publication date: March 22, 2018
    Inventors: Thomas Wehlus, Nina Riegel, Erwin Lang, Evelyn Trummer-Sailer, Arne Fleissner, Daniel Riedel, Johannes Rosenberger, Silke Scharner
  • Patent number: 9923173
    Abstract: In various embodiments, an optoelectronic component is provided. The optoelectronic component includes a metal substrate having a surface, an electrically conductive planarization layer on the surface of the metal substrate, wherein the planarization layer comprises a surface, an organically functional layer structure on or above the surface of the planarization layer, and an electrode layer formed in a transparent fashion on or above the organically functional layer structure. The roughness of the surface of the planarization layer is lower than the roughness of the surface of the metal substrate. The surface of at least one of the metal substrate or the planarization layer is formed in a light-scattering fashion.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: March 20, 2018
    Assignee: OSRAM OLED GmbH
    Inventor: Thomas Wehlus
  • Patent number: 9893319
    Abstract: The invention relates to a radiation-emitting, organic component comprising a radiation-permeable carrier body (1) having a first surface (1a) on a top side of the carrier body (1), a radiation-permeable, structured layer (2) that is arranged on the first surface (1a) and covers same at least in places, a radiation-permeable first electrode (3) that is arranged on the side of the structured layer (2) facing away from the carrier body (1), a layer stack (10) that is arranged on the side of the first electrode (3) facing away from the structured layer (2) and comprises an organic, active region, and a second electrode (6), wherein the active region (10a) can be electrically contacted via the first electrode (3) and the second electrode (6), the structured layer (2) is different from the radiation-permeable carrier body (1), and the structured layer (2) comprises structures (2a) for refracting and/or scattering electromagnetic radiation generated in the active region (100) during operation.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: February 13, 2018
    Assignee: OSRAM OLED GMBH
    Inventors: Thomas Dobbertin, Thilo Reusch, Nina Riegel, Daniel Steffen Setz, Thomas Wehlus
  • Patent number: 9887379
    Abstract: Various embodiments may relate to an optoelectronic component, including an organic functional layer structure, and an electrode on or above the organic functional layer structure. The electrode is electrically conductively coupled to the organic functional layer structure. The electrode includes an optically transparent or translucent matrix including at least one matrix material, and particles embedded into the matrix. The particles have a refractive index that is greater than the refractive index of the at least one matrix material. A difference in refractive index between the at least one matrix material and the particles embedded into the matrix is at least 0.05.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: February 6, 2018
    Assignee: OSRAM OLED GmbH
    Inventors: Silke Scharner, Thomas Wehlus
  • Patent number: 9882158
    Abstract: In various embodiments, an organic optoelectronic component is provided. The organic optoelectronic component may include a first electrode, an organic functional layer structure over the first electrode, and a second electrode over the organic functional layer structure. Optionally, the organic functional layer structure includes a charge carrier pair generation layer structure. At least one of the electrodes and/or the charge carrier pair generation layer structure includes electrically conductive nanostructures, the surfaces of which are at least partially coated with a coating material.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: January 30, 2018
    Assignee: OSRAM OLED GmbH
    Inventors: Thomas Wehlus, Erwin Lang, Richard Baisl, Daniel Riedel, Arndt Jaeger, Andreas Rausch, Silke Scharner
  • Publication number: 20180019289
    Abstract: According to the present disclosure, an organic light-emitting diode device is disclosed with an organic light-emitting diode having a first main surface and a second main surface lying opposite the first main surface, an optically functional device having a first hollow space and a second hollow space, and a control element. The first hollow space is arranged on or over the first main surface, and the second hollow space is arranged below the second main surface. The first hollow space and the second hollow space are connected to one another by means of a fluid connection. An optically functional fluid is arranged in the optically functional device. The control element is configured to move the optically functional fluid to and fro between the first hollow space and the second hollow space.
    Type: Application
    Filed: February 2, 2016
    Publication date: January 18, 2018
    Inventors: Dominik Pentlehner, Andreas Rausch, Thomas Wehlus, Carola Diez, Nina Riegel, Britta Goeoetz, Georg Dirscherl
  • Publication number: 20180013066
    Abstract: A method for producing an organic light-emitting diode and an organic light-emitting diode are disclosed. In an embodiment, the method includes providing a substrate with a continuous application surface, generating multiple adhesion regions on the application surface, the adhesion regions being completely surrounded by the application surface, applying metal nanowires over the entire surface of the application surface, removing the metal nanowires outside of the adhesion regions by a washing process using a solvent such that the remaining metal nanowires completely or partly form a light-permeable electrode of the organic light-emitting diode, and applying an organic layer sequence onto the light-permeable electrode.
    Type: Application
    Filed: February 5, 2016
    Publication date: January 11, 2018
    Applicant: OSRAM OLED GmbH
    Inventors: Silke Scharner, Thomas Wehlus, Nina Riegel, Arne Fleißner, Johannes Rosenberger, Daniel Riedel
  • Publication number: 20180006249
    Abstract: An optoelectronic device includes a flexible organic light-emitting diode having a main extension plane, a first retaining element having a first major surface formed in accordance with a bent surface, and a second retaining element, wherein the OLED is arranged between the first retaining element and the second retaining element, and the OLED is mechanically fixed by the first retaining element and/or the second retaining element such that the main extension plane of the OLED is formed in accordance with the bent surface.
    Type: Application
    Filed: June 9, 2017
    Publication date: January 4, 2018
    Inventors: Daniel Riedel, Nina Riegel, Thomas Wehlus, Arne Fleissner, Armin Heinrichsdobler, Sebastian Wittmann
  • Publication number: 20170358777
    Abstract: An light-emitting apparatus and a method for producing a light-emitting apparatus are disclosed. In an embodiment, the apparatus includes at least one organic device and an outcoupling layer, wherein the at least one organic device emits electromagnetic radiation during operation, wherein the outcoupling layer contains optical structures, and wherein the apparatus has a non-Lambertian radiation distribution curve during operation. The outcoupling layer influences the radiation passing through it in an optically varying manner by the optical structures along a lateral direction in order to produce the non-Lambertian radiation distribution curve.
    Type: Application
    Filed: February 2, 2016
    Publication date: December 14, 2017
    Inventors: Karsten Diekmann, Thorsten Vehoff, Ulrich Niedermeier, Andreas Rausch, Daniel Riedel, Nina Riegel, Thomas Wehlus
  • Publication number: 20170352838
    Abstract: In one embodiment the organic light-emitting diode includes a substrate having a substrate upper side, an electrically conductive grid structure for a current distribution and an electrically conductive particle layer, which are located at the substrate upper side. The grid structure may be embedded in the particle layer. An organic layer sequence for generating the radiation is located directly on the particle layer. A covering electrode is attached to the organic layer sequence. The particle layer comprises scattering particles having a first average diameter and electrically conductive particles having a smaller second average diameter. The scattering particles are densely packed together with the conductive particles. The particle layer forms, together with the grid structure, a substrate electrode for the organic layer sequence.
    Type: Application
    Filed: April 17, 2017
    Publication date: December 7, 2017
    Inventors: Thomas Wehlus, Daniel Riedel
  • Publication number: 20170346033
    Abstract: A method of producing an organic optoelectronic component includes: forming a first electrode layer comprising a contact region, arranging an electrically conductive contact lug on the first electrode layer. A first section of the contact lug is secured in the contact region on the first electrode layer such that a second section projects beyond the contact region. The method further includes forming an organic functional layer structure laterally alongside the contact lug on the first electrode layer, forming a second electrode on the organic functional layer structure, forming an encapsulation layer such that it extends over the second electrode and over the first section, and severing the first electrode layer and the encapsulation layer in the region of the lug such that subsequently the first section is arranged between the contact region and the encapsulation layer and the second section projects between the encapsulation layer and the first electrode layer.
    Type: Application
    Filed: May 24, 2017
    Publication date: November 30, 2017
    Inventors: Thomas Wehlus, Johannes Rosenberger, Arne Fleissner
  • Patent number: 9832838
    Abstract: In various embodiments, an optoelectronic assembly may include at least one organic light emitting diode including a first light emitting diode element and a second light emitting diode element, and an electronic circuit. The first light emitting diode element and the second light emitting diode element are electrically connected in parallel and are deposited monolithically on a common substrate, and the electronic circuit is designed to compare an electric current through the first light emitting diode element that flows during operation with an electric current through the second light emitting diode element that flows during operation and, depending on the comparison, to detect a short circuit of the first light emitting diode element or of the second light emitting diode element and to initiate an electrical switching off of one of the light emitting diode elements and/or of the assembly.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: November 28, 2017
    Assignee: OSRAM OLED GmbH
    Inventors: Arne Fleissner, Daniel Riedel, Nina Riegel, Silke Scharner, Johannes Rosenberger, Thomas Wehlus
  • Patent number: 9825246
    Abstract: Various embodiments may relate to a process for producing an optoelectronic component. In the process, a carrier is provided. A first electrode is formed upon the carrier. An optically functional layer structure is formed upon the first electrode. A second electrode is formed upon the optically functional layer structure. At least one of the two electrodes is formed by disposing electrically conductive nanowires on a surface on which the corresponding electrode is to be formed, and by heating the nanowires in such a way that they plastically deform.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: November 21, 2017
    Assignee: OSRAM OLED GmbH
    Inventors: Silke Scharner, Thomas Wehlus
  • Publication number: 20170331074
    Abstract: In various embodiments, an optoelectronic component is provided. The optoelectronic component includes a metal substrate having a surface, an electrically conductive planarization layer on the surface of the metal substrate, wherein the planarization layer comprises a surface, an organically functional layer structure on or above the surface of the planarization layer, and an electrode layer formed in a transparent fashion on or above the organically functional layer structure. The roughness of the surface of the planarization layer is lower than the roughness of the surface of the metal substrate. The surface of at least one of the metal substrate or the planarization layer is formed in a light-scattering fashion.
    Type: Application
    Filed: May 11, 2017
    Publication date: November 16, 2017
    Inventor: Thomas Wehlus
  • Patent number: 9818982
    Abstract: An optoelectronic assembly includes an optoelectronic component having a surface light source for emitting a light on a substrate which is at least partly transmissive for the light emitted by the surface light source, wherein the optoelectronic component includes at least one first main emission surface and a second main emission surface wherein the second main emission surface is situated opposite the first main emission surface, and a reflective structure which is arranged at least partly in the beam path of the light emitted by the surface light source and is designed to reflect at least part of the light impinging on the reflective structure in the direction of the substrate, such that a laterally offset image of the surface light source is generatable. The reflective structure and the optoelectronic component are arranged at a distance from one another in a range of approximately 1 mm to approximately 1000 mm.
    Type: Grant
    Filed: July 3, 2015
    Date of Patent: November 14, 2017
    Assignee: OSRAM OLED GmbH
    Inventors: Daniel Riedel, Thomas Wehlus, Nina Riegel, Silke Scharner, Johannes Rosenberger, Arne Fleissner