Patents by Inventor Thomas Weller Mountsier

Thomas Weller Mountsier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9418889
    Abstract: A dielectric diffusion barrier is deposited on a substrate that has a via and an overlying trench etched into an exposed layer of inter-layer dielectric, wherein there is exposed metal from the underlying interconnect at the bottom of the via. In order to provide a conductive path from the underlying metallization layer to the metallization layer that is being formed over it, the dielectric diffusion barrier is formed selectively on the inter-layer dielectric and not on the exposed metal at the bottom of the via. In one example a dielectric SiNC diffusion barrier layer is selectively deposited on the inter-layer dielectric using a remote plasma deposition and a precursor that contains both silicon and nitrogen atoms. Generally, a variety of dielectric diffusion barrier materials with dielectric constants of between about 3.0-20.0 can be selectively formed on inter-layer dielectric.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: August 16, 2016
    Assignee: Lam Research Corporation
    Inventors: Thomas Weller Mountsier, Hui-Jung Wu, Bhadri N. Varadarajan, Nagraj Shankar, William T. Lee
  • Patent number: 9379210
    Abstract: Various embodiments herein relate to formation of contact etch stop layers in the context of forming gates and contacts. In certain embodiments, a novel process flow is used, which may involve the deposition and removal of a sacrificial pre-metal dielectric material before a particular contact etch stop layer is formed. An auxiliary contact etch stop layer may be used in addition to a primary etch stop layer that is deposited previously. In certain cases the contact etch stop layer is a metal-containing material such as a nitride or an oxide. The contact etch stop layer may be deposited through a cyclic vapor deposition in some embodiments. The process flows disclosed herein provide improved protection against over-etching gate stacks, thereby minimizing gate-to-contact leakage. Further, the disclosed process flows result in wider flexibility in terms of materials and deposition conditions used for forming various dielectric materials, thereby minimizing parasitic capacitance.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: June 28, 2016
    Assignee: Lam Research Corporation
    Inventors: Thomas Weller Mountsier, Bart J. van Schravendijk, Ananda K. Banerji, Nagraj Shankar
  • Publication number: 20160071953
    Abstract: Various embodiments herein relate to formation of contact etch stop layers in the context of forming gates and contacts. In certain embodiments, a novel process flow is used, which may involve the deposition and removal of a sacrificial pre-metal dielectric material before a particular contact etch stop layer is formed. An auxiliary contact etch stop layer may be used in addition to a primary etch stop layer that is deposited previously. In certain cases the contact etch stop layer is a metal-containing material such as a nitride or an oxide. The contact etch stop layer may be deposited through a cyclic vapor deposition in some embodiments. The process flows disclosed herein provide improved protection against over-etching gate stacks, thereby minimizing gate-to-contact leakage. Further, the disclosed process flows result in wider flexibility in terms of materials and deposition conditions used for forming various dielectric materials, thereby minimizing parasitic capacitance.
    Type: Application
    Filed: October 14, 2015
    Publication date: March 10, 2016
    Inventors: Thomas Weller Mountsier, Bart J. van Schravendijk, Ananda K. Banerji, Nagraj Shankar
  • Publication number: 20150380302
    Abstract: A dielectric diffusion barrier is deposited on a substrate that has a via and an overlying trench etched into an exposed layer of inter-layer dielectric, wherein there is exposed metal from the underlying interconnect at the bottom of the via. In order to provide a conductive path from the underlying metallization layer to the metallization layer that is being formed over it, the dielectric diffusion barrier is formed selectively on the inter-layer dielectric and not on the exposed metal at the bottom of the via. In one example a dielectric SiNC diffusion barrier layer is selectively deposited on the inter-layer dielectric using a remote plasma deposition and a precursor that contains both silicon and nitrogen atoms. Generally, a variety of dielectric diffusion barrier materials with dielectric constants of between about 3.0-20.0 can be selectively formed on inter-layer dielectric.
    Type: Application
    Filed: June 17, 2015
    Publication date: December 31, 2015
    Inventors: Thomas Weller Mountsier, Hui-Jung Wu, Bhadri N. Varadarajan, Nagraj Shankar, William T. Lee
  • Patent number: 9190489
    Abstract: Various embodiments herein relate to formation of contact etch stop layers in the context of forming gates and contacts. In certain embodiments, a novel process flow is used, which may involve the deposition and removal of a sacrificial pre-metal dielectric material before a particular contact etch stop layer is formed. An auxiliary contact etch stop layer may be used in addition to a primary etch stop layer that is deposited previously. In certain cases the contact etch stop layer is a metal-containing material such as a nitride or an oxide. The contact etch stop layer may be deposited through a cyclic vapor deposition in some embodiments. The process flows disclosed herein provide improved protection against over-etching gate stacks, thereby minimizing gate-to-contact leakage. Further, the disclosed process flows result in wider flexibility in terms of materials and deposition conditions used for forming various dielectric materials, thereby minimizing parasitic capacitance.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: November 17, 2015
    Assignee: Lam Research Corporation
    Inventors: Thomas Weller Mountsier, Bart J. van Schravendijk, Ananda K. Banerji, Nagraj Shankar
  • Patent number: 6238751
    Abstract: A process for producing low-density, porous silica films in a vacuum environment is provided. The films are advantageous for use as low dielectric constant insulating materials in semiconductor devices. In a first step, an organic-group-containing silica precursor is deposited on a semiconductor substrate in a chemical vapor deposition reactor. In a second step, the organic groups are removed by heating in a furnace in an oxidizing environment or by exposure to an oxidizing plasma, thereby creating a low density silica film.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: May 29, 2001
    Assignee: Novellus Systems, Inc.
    Inventor: Thomas Weller Mountsier
  • Patent number: 6184572
    Abstract: An interlevel dielectric stack for use in semiconductor devices is provided. The interlevel stack includes a bottom adhesion layer, a middle layer composed of a fluorinated amorphous carbon film, and a top adhesion layer. The bottom and top adhesion layers are composed of a silicon carbide material containing hydrogen. The dielectric stack is subjected to rigorous adhesion and thermal testing. A single continuous process for depositing the dielectric stack in a high density plasma reactor is also provided.
    Type: Grant
    Filed: April 29, 1998
    Date of Patent: February 6, 2001
    Assignees: Novellus Systems, Inc., International Business Machines Corporation
    Inventors: Thomas Weller Mountsier, Michael J. Shapiro
  • Patent number: 6150258
    Abstract: An interlevel dielectric stack for use in semiconductor devices is provided. The interlevel stack includes a bottom adhesion layer, a middle layer composed of a fluorinated amorphous carbon film, and a top adhesion layer. The bottom and top adhesion layers are composed of a silicon carbide material containing hydrogen. The dielectric stack is subjected to rigorous adhesion and thermal testing. A single continuous process for depositing the dielectric stack in a high density plasma reactor is also provided.
    Type: Grant
    Filed: May 3, 1999
    Date of Patent: November 21, 2000
    Assignee: International Business Machines Corporation
    Inventors: Thomas Weller Mountsier, Michael J. Shapiro
  • Patent number: 6054206
    Abstract: A process for producing low-density, porous silica films in a vacuum environment is provided. The films are advantageous for use as low dielectric constant insulating materials in semiconductor devices. In a first step, an organic-group-containing silica precursor is deposited on a semiconductor substrate in a chemical vapor deposition reactor. In a second step, the organic groups are removed by heating in a furnace in an oxidizing environment or by exposure to an oxidizing plasma, thereby creating a low density silica film.
    Type: Grant
    Filed: June 22, 1998
    Date of Patent: April 25, 2000
    Assignee: Novellus Systems, Inc.
    Inventor: Thomas Weller Mountsier