Patents by Inventor Tianzu Fang

Tianzu Fang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10937926
    Abstract: A semiconductor wafer includes a substrate (1), a buffer layer (2) deposited on the substrate (1), and an epitaxial layer (4) above the buffer layer (2). The buffer layer (2) includes a plurality of semiconductor material layers (22) and a plurality of oxygen-doped material layers (21). The semiconductor material layers (22) and the oxygen-doped material layers (21) are deposited in an alternating arrangement on top of each other. Oxygen concentrations of the oxygen-doped material layers (21) gradually decrease along a direction from the substrate (1) to the epitaxial layer (4).
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: March 2, 2021
    Assignee: Xiamen Changelight Co., Ltd.
    Inventors: Zhiwei Lin, Kaixuan Chen, Yong Zhang, Xiangjing Zhuo, Wei Jiang, Yang Wang, Jichu Tong, Tianzu Fang
  • Patent number: 10916422
    Abstract: Disclosed is a wafer or a material stack for semiconductor-based optoelectronic or electronic devices that minimizes or reduces misfit dislocation, as well as a method of manufacturing such wafer of material stack. A material stack according to the disclosed technology includes a substrate; a basis buffer layer of a first material disposed above the substrate; and a plurality of composite buffer layers disposed above the basis buffer layer sequentially along a growth direction. The growth direction is from the substrate to a last composite buffer layer of the plurality of composite buffer layers. Each composite buffer layer except the last composite buffer layer includes a first buffer sublayer of the first material, and a second buffer sublayer of a second material disposed above the first buffer sublayer. The thicknesses of the first buffer sublayers of the composite buffer layers decrease along the growth direction.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: February 9, 2021
    Assignee: Xiamen Changelight Co., Ltd.
    Inventors: Kaixuan Chen, Wei Jiang, Zhiwei Lin, Xiangjing Zhuo, Tianzu Fang, Yang Wang, Jichu Tong
  • Publication number: 20190296189
    Abstract: A semiconductor wafer includes a substrate (1), a buffer layer (2) deposited on the substrate (1), and an epitaxial layer (4) above the buffer layer (2). The buffer layer (2) includes a plurality of semiconductor material layers (22) and a plurality of oxygen-doped material layers (21). The semiconductor material layers (22) and the oxygen-doped material layers (21) are deposited in an alternating arrangement on top of each other. Oxygen concentrations of the oxygen-doped material layers (21) gradually decrease along a direction from the substrate (1) to the epitaxial layer (4).
    Type: Application
    Filed: July 14, 2017
    Publication date: September 26, 2019
    Inventors: Zhiwei Lin, Kaixuan Chen, Yong Zhang, Xiangjing Zhuo, Wei Jiang, Yang Wang, Jichu Tong, Tianzu Fang
  • Patent number: 10333028
    Abstract: According to at least some embodiments of the present disclosure, a light-emitting diode (LED) chip includes a semiconductor material portion, a transparent conductive layer disposed above the semiconductor material portion, a current blocking layer disposed above the transparent conductive layer, one or more electrodes disposed above the current blocking layer, and a plurality of electron outflow channels that electrically interconnect at least one electrode and the semiconductor material portion across the transparent conductive layer and the current blocking layer.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: June 25, 2019
    Assignee: XIAMEN CHANGELIGHT CO., LTD.
    Inventors: Liang Chen, Junxian Li, Qimeng Lv, Zhendong Wei, Yingce Liu, Xiaoping Li, Xinmao Huang, Kaixuan Chen, Yong Zhang, Zhiwei Lin, Wei Jiang, Xiangjing Zhuo, Tianzu Fang
  • Publication number: 20190088476
    Abstract: Disclosed is a wafer or a material stack for semiconductor-based optoelectronic or electronic devices that minimizes or reduces misfit dislocation, as well as a method of manufacturing such wafer of material stack. A material stack according to the disclosed technology includes a substrate; a basis buffer layer of a first material disposed above the substrate; and a plurality of composite buffer layers disposed above the basis buffer layer sequentially along a growth direction. The growth direction is from the substrate to a last composite buffer layer of the plurality of composite buffer layers. Each composite buffer layer except the last composite buffer layer includes a first buffer sublayer of the first material, and a second buffer sublayer of a second material disposed above the first buffer sublayer. The thicknesses of the first buffer sublayers of the composite buffer layers decrease along the growth direction.
    Type: Application
    Filed: November 2, 2018
    Publication date: March 21, 2019
    Applicant: Xiamen Changelight Co., Ltd.
    Inventors: Kaixuan Chen, Wei Jiang, Zhiwei Lin, Xiangjing Zhuo, Tianzu Fang, Yang Wang, Jichu Tong
  • Patent number: 10121656
    Abstract: Disclosed is a wafer or a material stack for semiconductor-based optoelectronic or electronic devices that minimizes or reduces misfit dislocation, as well as a method of manufacturing such wafer of material stack. A material stack according to the disclosed technology includes a substrate; a basis buffer layer of a first material disposed above the substrate; and a plurality of composite buffer layers disposed above the basis buffer layer sequentially along a growth direction. The growth direction is from the substrate to a last composite buffer layer of the plurality of composite buffer layers. Each composite buffer layer except the last composite buffer layer includes a first buffer sublayer of the first material, and a second buffer sublayer of a second material disposed above the first buffer sublayer. The thicknesses of the first buffer sublayers of the composite buffer layers decrease along the growth direction.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: November 6, 2018
    Assignee: Xiamen Changelight Co., Ltd.
    Inventors: Kaixuan Chen, Wei Jiang, Zhiwei Lin, Xiangjing Zhuo, Tianzu Fang, Yang Wang, Jichu Tong
  • Patent number: 10043850
    Abstract: An HV-LED module having 3D light-emitting structure and a method for manufacturing the HV-LED module are disclosed. The HV-LED module has at least two stacked parts of substage LEDs that each have an independent light-emitting structure and are bonded in a staggered pattern, and the substage LEDs are connected in series to form the 3D light-emitting structure, thereby significantly increasing light-emitting power per unit area, downsizing a high-voltage chip module using it by nearly two times, and effectively reducing packaging costs for the HV-LED module.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: August 7, 2018
    Assignee: Xiamen Changelight Co., Ltd.
    Inventors: Zhiwei Lin, Kaixuan Chen, Yong Zhang, Xiangjing Zhuo, Wei Jiang, Tianzu Fang, Yinqiao Zhang, Xiangwu Wang
  • Publication number: 20170294557
    Abstract: According to at least some embodiments of the present disclosure, a light-emitting diode (LED) chip includes a semiconductor material portion, a transparent conductive layer disposed above the semiconductor material portion, a current blocking layer disposed above the transparent conductive layer, one or more electrodes disposed above the current blocking layer, and a plurality of electron outflow channels that electrically interconnect at least one electrode and the semiconductor material portion across the transparent conductive layer and the current blocking layer.
    Type: Application
    Filed: April 7, 2017
    Publication date: October 12, 2017
    Inventors: Liang Chen, Junxian Li, Qimeng Lv, Zhendong Wei, Yingce Liu, Xiaoping Li, Xinmao Huang, Kaixuan Chen, Yong Zhang, Zhiwei Lin, Wei Jiang, Xiangjing Zhuo, Tianzu Fang
  • Publication number: 20170256403
    Abstract: Disclosed is a method of manufacturing a semiconductor-based wafer for reducing misfit dislocation. The method includes steps of depositing a basis buffer layer of aluminum nitride (AlN) on a substrate; forming an AlN sublayer of a composite buffer layer on the basis buffer layer by supplying pulses of reactants for AlN for a first total pulse time period; forming an gallium nitride (GaN) sublayer of the composite buffer layer on the AlN sublayer by supplying pulses of reactants for GaN for a second total pulse time period; and growing additional composite buffer layers along a growth direction from the substrate to the composite buffer layers, by repeating steps of forming the AlN sublayer and forming the GaN sublayer. The first total pulse time period for each AlN sublayer decreases among the composite buffer layers along the growth direction.
    Type: Application
    Filed: February 14, 2017
    Publication date: September 7, 2017
    Inventors: Kaixuan Chen, Wei Jiang, Zhiwei Lin, Xiangjing Zhuo, Tianzu Fang, Yang Wang, Jichu Tong
  • Publication number: 20170256404
    Abstract: Disclosed is a wafer or a material stack for semiconductor-based optoelectronic or electronic devices that minimizes or reduces misfit dislocation, as well as a method of manufacturing such wafer of material stack. A material stack according to the disclosed technology includes a substrate; a basis buffer layer of a first material disposed above the substrate; and a plurality of composite buffer layers disposed above the basis buffer layer sequentially along a growth direction. The growth direction is from the substrate to a last composite buffer layer of the plurality of composite buffer layers. Each composite buffer layer except the last composite buffer layer includes a first buffer sublayer of the first material, and a second buffer sublayer of a second material disposed above the first buffer sublayer. The thicknesses of the first buffer sublayers of the composite buffer layers decrease along the growth direction.
    Type: Application
    Filed: February 14, 2017
    Publication date: September 7, 2017
    Inventors: Kaixuan Chen, Wei Jiang, Zhiwei Lin, Xiangjing Zhuo, Tianzu Fang, Yang Wang, Jichu Tong
  • Publication number: 20160276402
    Abstract: An HV-LED module having 3D light-emitting structure and a method for manufacturing the HV-LED module are disclosed. The HV-LED module has at least two stacked parts of substage LEDs that each have an independent light-emitting structure and are bonded in a staggered pattern, and the substage LEDs are connected in series to form the 3D light-emitting structure, thereby significantly increasing light-emitting power per unit area, downsizing a high-voltage chip module using it by nearly two times, and effectively reducing packaging costs for the HV-LED module.
    Type: Application
    Filed: March 18, 2016
    Publication date: September 22, 2016
    Inventors: Zhiwei Lin, Kaixuan Chen, Yong Zhang, Xiangjing Zhuo, Wei Jiang, Tianzu Fang, Yinqiao Zhang, Xiangwu Wang