Patents by Inventor Timothy G. Hallett

Timothy G. Hallett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11073891
    Abstract: A distributed power management system is configured determine a node power consumption of a node during a first time interval. The system can determine a node power cap. The system can determine a proportional component power budget for a component of the node based, at least in part, on the node power consumption and a component power consumption. The system can determine a power budget for the component for a second time interval based, at least in part on the proportional component power budget.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: July 27, 2021
    Assignee: International Business Machines Corporation
    Inventors: Alan Drake, Guillermo J. Silva, Timothy G. Hallett, Heather L. Hanson, Jordan Keuseman, Charles R. Lefurgy, Karthick Rajamani, Todd J. Rosedahl, Malcolm S. Allen-Ware
  • Publication number: 20190272019
    Abstract: A distributed power management system is configured determine a node power consumption of a node during a first time interval. The system can determine a node power cap. The system can determine a proportional component power budget for a component of the node based, at least in part, on the node power consumption and a component power consumption. The system can determine a power budget for the component for a second time interval based, at least in part on the proportional component power budget.
    Type: Application
    Filed: May 10, 2019
    Publication date: September 5, 2019
    Inventors: Alan Drake, Guillermo J. Silva, Timothy G. Hallett, Heather L. Hanson, Jordan Keuseman, Charles R. Lefurgy, Karthick Rajamani, Todd J. Rosedahl, Malcolm S. Allen-Ware
  • Patent number: 10331192
    Abstract: A distributed power management system is configured determine a node power consumption of a node during a first time interval. The system can determine a node power cap. The system can determine a proportional component power budget for a component of the node based, at least in part, on the node power consumption and a component power consumption. The system can determine a power budget for the component for a second time interval based, at least in part on the proportional component power budget.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: June 25, 2019
    Assignee: International Business Machines Corporation
    Inventors: Alan Drake, Guillermo J. Silva, Timothy G. Hallett, Heather L. Hanson, Jordan Keuseman, Charles R. Lefurgy, Karthick Rajamani, Todd J. Rosedahl, Malcolm S. Allen-Ware
  • Patent number: 9746909
    Abstract: It is determined that a current node power consumption for a node is greater than a node power cap that defines a limit of power consumption for the node. Responsive to the current node power consumption being greater than the node power cap and until the current node power consumption is less than the node power cap, power reduction operations are performed. The power reduction operations comprise determining a power management zone of a plurality of power management zones having a lowest priority among the power management zones and having a power cap greater than a minimum power cap for the power management zone. The power reduction operations further comprise setting the power cap for the power management zone to a value less than a prior value assigned as the power cap for the power management zone.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: August 29, 2017
    Assignee: International Business Machines Corporation
    Inventors: Malcolm S. Allen-Ware, Martha A. Broyles, Timothy G. Hallett, James D. Jordan, Jordan R. Keuseman, Benjamin W. Mashak, Glenn R. Miles, Todd J. Rosedahl, Guillermo J Silva
  • Patent number: 9740275
    Abstract: It is determined that a current node power consumption for a node is greater than a node power cap that defines a limit of power consumption for the node. Responsive to the current node power consumption being greater than the node power cap and until the current node power consumption is less than the node power cap, power reduction operations are performed. The power reduction operations comprise determining a power management zone of a plurality of power management zones having a lowest priority among the power management zones and having a power cap greater than a minimum power cap for the power management zone. The power reduction operations further comprise setting the power cap for the power management zone to a value less than a prior value assigned as the power cap for the power management zone.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: August 22, 2017
    Assignee: International Business Machines Corporation
    Inventors: Malcolm S. Allen-Ware, Martha A. Broyles, Timothy G. Hallett, James D. Jordan, Jordan R. Keuseman, Benjamin W. Mashak, Glenn R. Miles, Todd J. Rosedahl, Guillermo J Silva
  • Patent number: 9684366
    Abstract: A zone power cap for a power management zone that defines a limit of power consumption for the power management zone is determined. The power management zone comprises a plurality of components, wherein the power management zone is associated with a controller. A set of one or more characteristics of a workload associated with the power management zone is determined. A component power cap for one or more of the plurality of components is set based, at least in part, on the set of one or more characteristics of the workload and the zone power cap.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: June 20, 2017
    Assignee: International Business Machines Corporation
    Inventors: Malcolm S. Allen-Ware, Martha A. Broyles, Timothy G. Hallett, James D. Jordan, Jordan R. Keuseman, Benjamin W. Mashak, Glenn R. Miles, Todd J. Rosedahl, Guillermo J Silva
  • Publication number: 20160124486
    Abstract: A distributed power management system is configured determine a node power consumption of a node during a first time interval. The system can determine a node power cap. The system can determine a proportional component power budget for a component of the node based, at least in part, on the node power consumption and a component power consumption. The system can determine a power budget for the component for a second time interval based, at least in part on the proportional component power budget.
    Type: Application
    Filed: January 13, 2016
    Publication date: May 5, 2016
    Inventors: Alan Drake, Guillermo J. Silva, Timothy G. Hallett, Heather L. Hanson, Jordan Keuseman, Charles R. Lefurgy, Karthick Rajamani, Todd J. Rosedahl, Malcolm S. Allen-Ware
  • Patent number: 9323300
    Abstract: An indication of a first performance state is received, the first performance state being associated with a first voltage. The first performance state applies to at least one computing system component and the indication is received by a computing system component distinct from the requesting computing system component. An indication of a second performance state is received. The second performance state is associated with a second voltage that is different from the first voltage. It is determined whether the second performance state is within a range defined by a minimum and maximum performance state. Responsive to a determination that the second performance state is within the minimum and maximum performance state, the voltage of the at least one computing system component is set equal to the voltage associated with the second performance state.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: April 26, 2016
    Assignee: International Business Machines Corporation
    Inventors: Bishop Brock, Tilman Gloekler, Timothy G. Hallett, Charles R. Lefurgy, Karthick Rajamani, Guillermo J. Silva, Gregory S. Still, Malcolm S. Allen-Ware
  • Patent number: 9323301
    Abstract: Computing system voltage control methods include receiving an indication of a first performance state. The first performance state is associated with a first voltage and applies to at least one computing system component. The indication of the first performance state is received by a first computing system component from a second computing system component. An indication of a second performance state is received, wherein the second performance state is associated with a second voltage that is not equal to the first voltage. It is determined whether the second performance state is within a range defined by a minimum performance state and a maximum performance state. Responsive to determining that the second performance state is within the range defined by the minimum performance state and the maximum performance state, the voltage of the at least one computing system component is set equal to the voltage associated with the second performance state.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: April 26, 2016
    Assignee: International Business Machines Corporation
    Inventors: Malcolm S. Allen-Ware, Bishop Brock, Tilman Gloekler, Timothy G. Hallett, Charles R. Lefurgy, Karthick Rajamani, Guillermo J. Silva, Gregory S. Still
  • Patent number: 9298247
    Abstract: A distributed power management computer program product is configured to collect power consumption data that indicates power consumption by at least a plurality of the components of a node. The program code can be configured to provide, to each of a plurality of controllers associated with a respective one of the plurality of components, the power consumption data. The program code can be configured to determine a node power consumption. The program code can be configured to determine a power differential as a difference between the node power consumption and an upper power consumption threshold of the node. The program code can be configured to determine a proportion of the node power consumption consumed by a first component. The program code can be configured to compute a local power budget for the first component.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: March 29, 2016
    Assignee: International Business Machines Corporation
    Inventors: Alan Drake, Guillermo J. Silva, Timothy G. Hallett, Heather L. Hanson, Jordan Keuseman, Charles R. Lefurgy, Karthick Rajamani, Todd J. Rosedahl, Malcom S. Allen-Ware
  • Patent number: 9292074
    Abstract: Embodiments include collecting, from each of a plurality of controllers of a node having a plurality of components, component power consumption. Each of the plurality of controllers is associated with one or more of the components. The component power consumptions are provided to the controllers. A node power consumption for the node is determined based, at least in part, on the component power consumption. The power cap is determined for the plurality of components. A power differential power is determined as a difference between the node power consumption and the power cap for the plurality of components. A proportion of the node power consumption consumed by the component is determined based on the component power consumption of the component. A local power budget is computed for the component based, at least in part, on the power differential and the proportion of the node power consumption consumed by the component.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: March 22, 2016
    Assignee: International Business Machines Corporation
    Inventors: Malcolm S. Allen-Ware, Alan Drake, Timothy G. Hallett, Heather L. Hanson, Jordan Keuseman, Charles R. Lefurgy, Karthick Rajamani, Todd J. Rosedahl, Guillermo J. Silva
  • Patent number: 9256273
    Abstract: Embodiments include collecting, from each of a plurality of controllers of a node having a plurality of components, component power consumption. Each of the plurality of controllers is associated with one or more of the components. The component power consumptions are provided to the controllers. A node power consumption for the node is determined based, at least in part, on the component power consumption. The power cap is determined for the plurality of components. A power differential power is determined as a difference between the node power consumption and the power cap for the plurality of components. A proportion of the node power consumption consumed by the component is determined based on the component power consumption of the component. A local power budget is computed for the component based, at least in part, on the power differential and the proportion of the node power consumption consumed by the component.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: February 9, 2016
    Assignee: International Business Machines Corporation
    Inventors: Malcolm S. Allen-Ware, Alan Drake, Timothy G. Hallett, Heather L. Hanson, Jordan Keuseman, Charles R. Lefurgy, Karthick Rajamani, Todd J. Rosedahl, Guillermo J. Silva
  • Patent number: 9250668
    Abstract: A maximum and a minimum performance operating limit is set for a plurality of processing units in accordance with a set of one or more rules enforced by the performance supervisor. Each of the plurality of processing units has logic configured to ensure a request for an operational setting complies with the maximum and minimum operating limits. Each of the plurality of processing units is configured to output a request for a limit compliant operational setting to a performance controller. The performance controller is configured to actuate the operational request.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: February 2, 2016
    Assignee: International Business Machines Corporation
    Inventors: Bishop Brock, Tilman Gloekler, Timothy G. Hallett, Karthick Rajamani, Guillermo J. Silva, Gregory S. Still, Malcolm S. Allen-Ware, Todd J. Rosedahl
  • Patent number: 9182797
    Abstract: Embodiments of the inventive subject matter include setting minimum and maximum performance operating limits for each of a plurality of controllers. The operating limits are set in accordance with performance rules imposed on the system. In response to a request to change operation of a processing unit to a requested operational setting, it is determined whether the requested operational setting complies with the minimum and maximum performance operating limits. The minimum performance operating limit is sent to a performance controller if the requested operational setting does not comply with the minimum performance operating limit. The maximum performance operating limit is sent to a performance controller if the requested operational setting does not comply with the maximum performance operating limit. The requested operational setting is sent to a performance controller if the requested operational setting complies with the minimum and maximum performance operating limits.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: November 10, 2015
    Assignee: International Business Machines Corporation
    Inventors: Malcolm S. Allen-Ware, Bishop Brock, Tilman Gloekler, Timothy G. Hallett, Karthick Rajamani, Todd J. Rosedahl, Guillermo J. Silva, Gregory S. Still
  • Publication number: 20150241947
    Abstract: A zone power cap for a power management zone that defines a limit of power consumption for the power management zone is determined. The power management zone comprises a plurality of components, wherein the power management zone is associated with a controller. A set of one or more characteristics of a workload associated with the power management zone is determined. A component power cap for one or more of the plurality of components is set based, at least in part, on the set of one or more characteristics of the workload and the zone power cap.
    Type: Application
    Filed: June 23, 2014
    Publication date: August 27, 2015
    Inventors: Malcolm S. Allen-Ware, Martha A. Broyles, Timothy G. Hallett, James D. Jordan, Jordan R. Keuseman, Benjamin W. Mashak, Glenn R. Miles, Todd J. Rosedahl, Guillermo J Silva
  • Publication number: 20150241946
    Abstract: It is determined that a current node power consumption for a node is greater than a node power cap that defines a limit of power consumption for the node. Responsive to the current node power consumption being greater than the node power cap and until the current node power consumption is less than the node power cap, power reduction operations are performed. The power reduction operations comprise determining a power management zone of a plurality of power management zones having a lowest priority among the power management zones and having a power cap greater than a minimum power cap for the power management zone. The power reduction operations further comprise setting the power cap for the power management zone to a value less than a prior value assigned as the power cap for the power management zone.
    Type: Application
    Filed: June 23, 2014
    Publication date: August 27, 2015
    Inventors: Malcolm S. Allen-Ware, Martha A. Broyles, Timothy G. Hallett, James D. Jordan, Jordan R. Keuseman, Benjamin W. Mashak, Glenn R. Miles, Todd J. Rosedahl, Guillermo J. Silva
  • Publication number: 20150241943
    Abstract: It is determined that a current node power consumption for a node is greater than a node power cap that defines a limit of power consumption for the node. Responsive to the current node power consumption being greater than the node power cap and until the current node power consumption is less than the node power cap, power reduction operations are performed. The power reduction operations comprise determining a power management zone of a plurality of power management zones having a lowest priority among the power management zones and having a power cap greater than a minimum power cap for the power management zone. The power reduction operations further comprise setting the power cap for the power management zone to a value less than a prior value assigned as the power cap for the power management zone.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 27, 2015
    Applicant: International Business Machines Corporation
    Inventors: Malcolm S. Allen-Ware, Martha A. Broyles, Timothy G. Hallett, James D. Jordan, Jordan R. Keuseman, Benjamin W. Mashak, Glenn R. Miles, Todd J. Rosedahl, Guillermo J. Silva
  • Publication number: 20150241944
    Abstract: A zone power cap for a power management zone that defines a limit of power consumption for the power management zone is determined. The power management zone comprises a plurality of components, wherein the power management zone is associated with a controller. A set of one or more characteristics of a workload associated with the power management zone is determined. A component power cap for one or more of the plurality of components is set based, at least in part, on the set of one or more characteristics of the workload and the zone power cap.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 27, 2015
    Applicant: International Business Machines Corporation
    Inventors: Malcolm S. Allen-Ware, Martha A. Broyles, Timothy G. Hallett, James D. Jordan, Jordan R. Keuseman, Benjamin W. Mashak, Glenn R. Miles, Todd J. Rosedahl, Guillermo J Silva
  • Publication number: 20140149755
    Abstract: A performance supervisor computer program product is configured to set a maximum and a minimum performance operating limit for a plurality of processing units in accordance with a set of one or more rules enforced by the performance supervisor. Each of the plurality of processing units has logic configured to ensure a request for an operational setting complies with the maximum and minimum operating limits. Each of the plurality of processing units is configured to output a request for a limit compliant operational setting to a performance controller. The performance controller is configured to actuate the operational request.
    Type: Application
    Filed: November 29, 2012
    Publication date: May 29, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bishop Brock, Tilman Gloekler, Timothy G. Hallett, Karthick Rajamani, Guillermo J. Silva, Gregory S. Still, Malcolm S. Allen-Ware, Todd J. Rosedahl
  • Publication number: 20140149762
    Abstract: Embodiments of the inventive subject matter include setting minimum and maximum performance operating limits for each of a plurality of controllers. The operating limits are set in accordance with performance rules imposed on the system. In response to a request to change operation of a processing unit to a requested operational setting, it is determined whether the requested operational setting complies with the minimum and maximum performance operating limits. The minimum performance operating limit is sent to a performance controller if the requested operational setting does not comply with the minimum performance operating limit. The maximum performance operating limit is sent to a performance controller if the requested operational setting does not comply with the maximum performance operating limit. The requested operational setting is sent to a performance controller if the requested operational setting complies with the minimum and maximum performance operating limits.
    Type: Application
    Filed: February 8, 2013
    Publication date: May 29, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Malcolm S. Allen-Ware, Bishop Brock, Tilman Gloekler, Timothy G. Hallett, Karthick Rajamani, Todd J. Rosedahl, Guillermo J. Silva, Gregory S. Still