Patents by Inventor Timothy I. Morrow

Timothy I. Morrow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11346181
    Abstract: Techniques described herein relate to a well completion including an engineered production liner extending into a reservoir. The engineered production liner includes limited-entry liner (LEL) valves configured to open to allow an acid solution to jet into the reservoir during an acid stimulation process, and close to prevent production fluid from flowing through the LEL valves when the well completion is put into production. The engineered production liner also includes pre-packed chemically-infused material (CIM) cartridges including production chemicals, and openings that align with the pre-packed CIM cartridges. The openings are plugged during the acid stimulation process to force the acid solution to flow through the LEL valves. The pre-packed CIM cartridges and the openings are configured to allow the production fluid to absorb a portion of the production chemicals as it flows from the reservoir into the engineered production liner when the well completion is put into production.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: May 31, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventor: Timothy I. Morrow
  • Patent number: 11180986
    Abstract: Discrete wellbore devices, hydrocarbon wells including a downhole communication network and the discrete wellbore devices, and systems and methods including the same are disclosed herein. The discrete wellbore devices include a wellbore tool and a communication device. The wellbore tool is configured to perform a downhole operation within a wellbore conduit that is defined by a wellbore tubular of the hydrocarbon well. The communication device is operatively coupled for movement with the wellbore tool within the wellbore conduit. The communication device is configured to communicate with a downhole communication network that extends along the wellbore tubular via a wireless communication signal. The methods include actively and/or passively detecting a location of the discrete wellbore device within the wellbore conduit. The methods additionally or alternatively include wireless communication between the discrete wellbore device and the downhole communication network.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: November 23, 2021
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Timothy I. Morrow, Renzo M. Angeles Boza, Bruce A. Dale
  • Publication number: 20210164325
    Abstract: Techniques described herein relate to a well completion including an engineered production liner extending into a reservoir. The engineered production liner includes limited-entry liner (LEL) valves configured to open to allow an acid solution to jet into the reservoir during an acid stimulation process, and close to prevent production fluid from flowing through the LEL valves when the well completion is put into production. The engineered production liner also includes pre-packed chemically-infused material (CIM) cartridges including production chemicals, and openings that align with the pre-packed CIM cartridges. The openings are plugged during the acid stimulation process to force the acid solution to flow through the LEL valves. The pre-packed CIM cartridges and the openings are configured to allow the production fluid to absorb a portion of the production chemicals as it flows from the reservoir into the engineered production liner when the well completion is put into production.
    Type: Application
    Filed: September 22, 2020
    Publication date: June 3, 2021
    Inventor: Timothy I. Morrow
  • Patent number: 10697287
    Abstract: A real-time system for monitoring plunger properties in a gas producing well is provided.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: June 30, 2020
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Michael C. Romer, Randy C. Tolman, Timothy I. Morrow
  • Patent number: 10689962
    Abstract: Remotely actuated screenout relief valves, systems and methods are disclosed herein. The methods include providing a proppant slurry stream that includes proppant to a casing conduit that is defined by a casing string that extends within a subterranean formation. The methods further include detecting an operational parameter that is indicative of a screenout event within the casing conduit. Responsive to the detecting, the methods include providing a flush fluid stream to the casing conduit, opening the remotely actuated screenout relief valve, and displacing the proppant from the casing conduit into the subterranean formation with the flush fluid stream via the remotely actuated screenout relief valve. The methods may further include closing the remotely actuated screenout relief valve. The systems include hydrocarbon wells that include the remotely actuated screenout relief valve and/or hydrocarbon wells that include controllers that are configured to perform at least a portion of the methods.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: June 23, 2020
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Timothy I. Morrow, Randy C. Tolman, Renzo M. Angeles Boza, Mark M. Disko, Max Deffenbaugh
  • Publication number: 20200072043
    Abstract: Discrete wellbore devices, hydrocarbon wells including a downhole communication network and the discrete wellbore devices, and systems and methods including the same are disclosed herein. The discrete wellbore devices include a wellbore tool and a communication device. The wellbore tool is configured to perform a downhole operation within a wellbore conduit that is defined by a wellbore tubular of the hydrocarbon well. The communication device is operatively coupled for movement with the wellbore tool within the wellbore conduit. The communication device is configured to communicate with a downhole communication network that extends along the wellbore tubular via a wireless communication signal. The methods include actively and/or passively detecting a location of the discrete wellbore device within the wellbore conduit. The methods additionally or alternatively include wireless communication between the discrete wellbore device and the downhole communication network.
    Type: Application
    Filed: November 6, 2019
    Publication date: March 5, 2020
    Inventors: Timothy I. Morrow, Renzo M. Angeles Boza, Bruce A. Dale
  • Patent number: 10508536
    Abstract: Discrete wellbore devices, hydrocarbon wells including a downhole communication network and the discrete wellbore devices, and systems and methods including the same are disclosed herein. The discrete wellbore devices include a wellbore tool and a communication device. The wellbore tool is configured to perform a downhole operation within a wellbore conduit that is defined by a wellbore tubular of the hydrocarbon well. The communication device is operatively coupled for movement with the wellbore tool within the wellbore conduit. The communication device is configured to communicate with a downhole communication network that extends along the wellbore tubular via a wireless communication signal. The methods include actively and/or passively detecting a location of the discrete wellbore device within the wellbore conduit. The methods additionally or alternatively include wireless communication between the discrete wellbore device and the downhole communication network.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: December 17, 2019
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Timothy I. Morrow, Renzo M. Angeles Boza, Bruce A. Dale
  • Patent number: 10480308
    Abstract: An electro-acoustic system for downhole telemetry employs a series of communications nodes spaced along a string of casing within a wellbore. The nodes allow wireless communication between transceivers residing within the nodes and a receiver at the surface. The transceivers provide node-to-node communication up a wellbore at high data transmission rates for data indicative of fluid flow within the wellbore. A method of monitoring the flow of fluid within a wellbore uses a plurality of data transmission nodes situated along the casing string sending signals to a receiver at the surface. The signals are then analyzed.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: November 19, 2019
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Timothy I. Morrow, Stuart R. Keller, Max Deffenbaugh, Mark M. Disko, David A. Stiles
  • Patent number: 10408047
    Abstract: A method of transmitting data in a wellbore uses a signal receiver that is run into the wellbore on a working string. The signal receiver receives wireless signals from receiver communications nodes placed along the wellbore. The data from those signals is then sent up the wellbore, either by directing the signals directly up the working string, or by spooling the string to the surface and uploading the data. Sensors and associated communications nodes are placed within the wellbore to collect data. The communications nodes may be the signal receiver nodes; alternatively, the communications nodes may send data from the sensors up the wellbore through acoustic signals to a receiver communications node. In the latter instance, intermediate communications nodes having electro-acoustic transducers are used as part of a novel telemetry system.
    Type: Grant
    Filed: October 23, 2015
    Date of Patent: September 10, 2019
    Assignee: ExxonMobil Upstream Research Company
    Inventor: Timothy I. Morrow
  • Publication number: 20190128106
    Abstract: Remotely actuated screenout relief valves, systems and methods are disclosed herein. The methods include providing a proppant slurry stream that includes proppant to a casing conduit that is defined by a casing string that extends within a subterranean formation. The methods further include detecting an operational parameter that is indicative of a screenout event within the casing conduit. Responsive to the detecting, the methods include providing a flush fluid stream to the casing conduit, opening the remotely actuated screenout relief valve, and displacing the proppant from the casing conduit into the subterranean formation with the flush fluid stream via the remotely actuated screenout relief valve. The methods may further include closing the remotely actuated screenout relief valve. The systems include hydrocarbon wells that include the remotely actuated screenout relief valve and/or hydrocarbon wells that include controllers that are configured to perform at least a portion of the methods.
    Type: Application
    Filed: October 12, 2018
    Publication date: May 2, 2019
    Inventors: Timothy I. Morrow, Randy C. Tolman, Renzo M. Angeles Boza, Mark M. Disko, Max Deffenbaugh
  • Patent number: 10167717
    Abstract: A system for downhole telemetry is provided herein. The system employs a series of communications nodes spaced along a tubular body either above or below ground, such as in a wellbore. The nodes allow for wireless communication between one or more sensors residing at the level of a subsurface formation or along a pipeline, and a receiver at the surface. The communications nodes employ electro-acoustic transducers that provide for node-to-node communication along the tubular body at high data transmission rates. A method of transmitting data in a wellbore is also provided herein. The method uses a plurality of data transmission nodes situated along a tubular body and a specially configured network to accomplish a wireless transmission of data along the wellbore using acoustic energy.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: January 1, 2019
    Assignee: Exxonmobil Upstream Research Company
    Inventors: Mark M. Disko, Timothy I. Morrow, Max Deffenbaugh, Katie M. Walker, Scott W. Clawson, Henry Alan Wolf
  • Patent number: 10138707
    Abstract: A method of completing a well involving remediating a condition of screen-out that has taken place along a zone of interest. The method includes forming a wellbore, and lining at least a lower portion of the wellbore with a string of production casing and placing a valve along the production casing, wherein the valve creates a removable barrier to fluid flow within the bore. The barrier is removed by moving the valve in the event of a screen-out. This overcomes the barrier to fluid flow, thereby exposing ports along the production casing to the subsurface formation at or below the valve. Additional pumping takes place to pump the slurry through the exposed ports, thereby remediating the condition of screen-out.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: November 27, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Randy C. Tolman, Timothy I Morrow, Timothy G Benish
  • Patent number: 10138713
    Abstract: Autonomous wellbore devices with orientation-regulating structures are disclosed, including systems and methods using the same. The autonomous wellbore devices include a wellbore tool, a control structure, and an orientation-regulating structure. The wellbore tool is configured to autonomously perform a downhole operation within a wellbore conduit that extends within a subterranean formation. The control structure is programmed to determine that an actuation criterion has been satisfied and to provide an actuation signal to the wellbore tool. The orientation-regulating structure is configured to regulate a cross-sectional orientation of the wellbore tool while the autonomous wellbore device is being conveyed autonomously within the wellbore conduit.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: November 27, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Randy C. Tolman, Timothy I. Morrow
  • Patent number: 10132149
    Abstract: Remotely actuated screenout relief valves, systems and methods are disclosed herein. The methods include providing a proppant slurry stream that includes proppant to a casing conduit that is defined by a casing string that extends within a subterranean formation. The methods further include detecting an operational parameter that is indicative of a screenout event within the casing conduit. Responsive to the detecting, the methods include providing a flush fluid stream to the casing conduit, opening the remotely actuated screenout relief valve, and displacing the proppant from the casing conduit into the subterranean formation with the flush fluid stream via the remotely actuated screenout relief valve. The methods may further include closing the remotely actuated screenout relief valve. The systems include hydrocarbon wells that include the remotely actuated screenout relief valve and/or hydrocarbon wells that include controllers that are configured to perform at least a portion of the methods.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: November 20, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Timothy I. Morrow, Randy C. Tolman, Renzo M. Angeles Boza, Mark M. Disko, Max Deffenbaugh
  • Publication number: 20180320510
    Abstract: A system for downhole telemetry is provided herein. The system employs a series of communications nodes spaced along a tubular body either above or below ground, such as in a wellbore. The nodes allow for wireless communication between one or more sensors residing at the level of a subsurface formation or along a pipeline, and a receiver at the surface. The communications nodes employ electro-acoustic transducers that provide for node-to-node communication along the tubular body at high data transmission rates. A method of transmitting data in a wellbore is also provided herein. The method uses a plurality of data transmission nodes situated along a tubular body and a specially configured network to accomplish a wireless transmission of data along the wellbore using acoustic energy.
    Type: Application
    Filed: July 19, 2018
    Publication date: November 8, 2018
    Inventors: Mark M. Disko, Timothy I. Morrow, Max Deffenbaugh, Katie M. Walker, Scott W. Clawson, Henry Alan Wolf
  • Patent number: 10100635
    Abstract: A system for downhole telemetry is provided herein. The system employs a series of communications nodes spaced along a tubular body in a wellbore. Each communications node is associated with a sensor that senses data indicative of a formation condition or a wellbore parameter along a subsurface formation. The data is stored in memory until a logging tool is run into the wellbore. The data is transmitted from the respective communications nodes to a receiver in the logging tool. The data is then transferred to the surface. A method of transmitting data in a wellbore is also provided herein. The method uses a logging tool to harvest data in a wellbore from a plurality of sensor communications nodes.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: October 16, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Stuart R. Keller, Timothy I. Morrow, James S. Burns, Max Deffenbaugh, Mark M. Disko, David A. Stiles
  • Patent number: 10053968
    Abstract: A completion assembly designed to perforate a section of casing along a wellbore, comprises a perforating gun, a canister, and a locator device. The canister contains ball sealers that are dimensioned to seal perforations, while the locator device is a casing collar locator that senses the location of the assembly within the wellbore based on the spacing of casing collars. The completion assembly also includes an on-board controller configured to send an actuation signal to the perforating gun to cause one or more detonators to fire when the locator has recognized a selected location of the completion assembly, thereby perforating the casing, and to release the ball sealers from the canister. Methods for seamlessly perforating and fracturing multiple zones along a wellbore are also provided, using a select-fire perforating gun.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: August 21, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Randy C. Tolman, Pavlin B. Entchev, Timothy I. Morrow
  • Patent number: 10030473
    Abstract: A method of completing a well involving remediating a condition of screen-out that has taken place along a zone of interest. The method includes forming a wellbore, and lining at least a lower portion of the wellbore with a string of production casing and placing a valve along the production casing, wherein the valve creates a removable barrier to fluid flow within the bore. The barrier is removed by moving the valve in the event of a screen-out. This overcomes the barrier to fluid flow, thereby exposing ports along the production casing to the subsurface formation at or below the valve. Additional pumping takes place to pump the slurry through the exposed ports, thereby remediating the condition of screen-out.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: July 24, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Randy C. Tolman, Timothy I Morrow, Timothy G Benish
  • Publication number: 20180058191
    Abstract: A real-time system for monitoring plunger properties in a gas producing well is provided.
    Type: Application
    Filed: August 1, 2017
    Publication date: March 1, 2018
    Inventors: Michael C. Romer, Randy C. Tolman, Timothy I. Morrow
  • Patent number: 9879525
    Abstract: Systems and methods for monitoring a condition of a tubular configured to convey a fluid such as for use in producing hydrocarbons in relationship with a hydrocarbon system related wellbore operation. The methods include transmitting a data signal along the tubular with the communication network. The methods may include initiating a tubular operation responsive to the data signal indicating that the condition of the tubular is outside a predetermined condition range. The methods may include transmitting the data signal by propagating the data signal along the tubular via a plurality of node-to-node communications between communication nodes of the communication network and monitoring a signal propagation property of the plurality of node-to-node communications that is indicative of the condition of the tubular. The methods may include detecting the condition of the tubular and generating a condition indication signal.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: January 30, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Timothy I. Morrow, Mark M. Disko