Patents by Inventor Timothy J. Miller

Timothy J. Miller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170049856
    Abstract: Provided herein are methods of treating a cardiomyopathy in a subject by administering directly to, or expressing locally in, a weakened, ischemic, and/or peri-infarct region of myocardial tissue of the subject an amount of SDF-1 effective to cause functional improvement in at least one of the following parameters: left ventricular volume, left ventricular area, left ventricular dimension, cardiac function, 6-minute walk test, or New York Heart Association (NYHA) functional classification. Methods of treating subjects with advanced ischemic cardiomyopathy are further disclosed herein.
    Type: Application
    Filed: April 28, 2015
    Publication date: February 23, 2017
    Applicants: Juventas Therapeutics, Inc., The Cleveland Clinic Foundation
    Inventors: Marc S. PENN, Rahul ARAS, Joseph PASTORE, Timothy J. MILLER
  • Patent number: 9540952
    Abstract: A turbocharger for an internal combustion engine, the turbocharger being supported by hydrostatic bearings in both a radial and an axial direction by a compressed air supplied from a compressor of the turbocharger and boosted in pressure by a separate boost pump to a high enough pressure to support the rotor of the turbocharger.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: January 10, 2017
    Assignee: S & J DESIGN, LLC
    Inventors: Timothy J Miller, Alex Pinera
  • Patent number: 9524849
    Abstract: A method for improving the ion beam quality in an ion implanter is disclosed. In some ion implantation systems, contaminants from the ion source are extracted with the desired ions, introducing contaminants to the workpiece. These contaminants may be impurities in the ion source chamber. This problem is exacerbated when mass analysis of the extracted ion beam is not performed, and is further exaggerated when the desired feedgas includes a halogen. The introduction of a diluent gas in the ion chamber may reduce the deleterious effects of the halogen on the inner surfaces of the chamber, reducing contaminants in the extracted ion beam. In some embodiments, the diluent gas may be germane or silane.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: December 20, 2016
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: John W. Graff, Bon-Woong Koo, John A. Frontiero, Nicholas PT Bateman, Timothy J. Miller, Vikram M. Bhosle
  • Publication number: 20160333737
    Abstract: A turbocharger for an internal combustion engine, the turbocharger being supported by hydrostatic bearings in both a radial and an axial direction by a compressed air supplied from a compressor of the turbocharger and boosted in pressure by a separate boost pump to a high enough pressure to support the rotor of the turbocharger.
    Type: Application
    Filed: April 4, 2014
    Publication date: November 17, 2016
    Inventors: Timothy J Miller, Alex Pinera
  • Publication number: 20160293378
    Abstract: An ion implanter has a coating of low resistivity silicon carbide on one or more of the conductive surfaces that are exposed to ions. For example, ions are generated in an ion source chamber, and the interior surfaces of the walls are coated with low resistivity silicon carbide. Since silicon carbide is hard and resistant to sputtering, this may reduce the amount of contaminant ions that are introduced into the ion beam that is extracted from the ion source chamber. In some embodiments, the extraction electrodes are also coated with silicon carbide to reduce the contaminant ions introduced by these components.
    Type: Application
    Filed: June 7, 2016
    Publication date: October 6, 2016
    Inventors: Robert J. Mason, Shardul S. Patel, Robert H. Bettencourt, Timothy J. Miller
  • Publication number: 20160279237
    Abstract: The present disclosure provides for an adjuvant composition that is suited for injectable as well as transdermal administration. The adjuvant composition generally comprises a lipophile, a polymer of acrylic or methacrylic acid, saline, cholesterol, a saponin, and sodium hydroxide. A vaccine composition is also provided for that generally includes the vaccine composition of the present disclosure and a DNA component. A method for vaccinating animals and humans utilizing the adjuvant composition of the present disclosure is also provided.
    Type: Application
    Filed: March 24, 2016
    Publication date: September 29, 2016
    Inventors: Timothy J. Miller, Mary Ann Pfannenstiel
  • Patent number: 9441290
    Abstract: A system and method for the removal of deposited material from the walls of a plasma chamber is disclosed. The system may have two modes; a normal operating mode and a cleaning mode. During the cleaning mode, the plasma is biased at a higher potential than the walls, thereby causing energetic ions from the plasma to strike the plasma wall, dislodging material previously deposited. This may be achieved through the use of one or more electrodes disposed in the plasma chamber, which are maintained at a first voltage during normal operating mode, and a second, higher voltage, during the cleaning mode.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: September 13, 2016
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Min-Sung Jeon, Yong-Tae Kim, Timothy J. Miller
  • Patent number: 9384937
    Abstract: An ion implanter has a coating of low resistivity silicon carbide on one or more of the conductive surfaces that are exposed to ions. For example, ions are generated in an ion source chamber, and the interior surfaces of the walls are coated with low resistivity silicon carbide. Since silicon carbide is hard and resistant to sputtering, this may reduce the amount of contaminant ions that are introduced into the ion beam that is extracted from the ion source chamber. In some embodiments, the extraction electrodes are also coated with silicon carbide to reduce the contaminant ions introduced by these components.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: July 5, 2016
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Robert J. Mason, Shardul S. Patel, Robert H. Bettencourt, Timothy J. Miller
  • Publication number: 20160163510
    Abstract: An apparatus and methods of improving the ion beam quality of a halogen-based source gas are disclosed. Unexpectedly, the introduction of a noble gas, such as argon, to an ion source chamber may increase the percentage of desirable ion species, while decreasing the amount of contaminants and halogen-containing ions. This is especially beneficial in non-mass analyzed implanters, where all ions are implanted into the workpiece. In one embodiment, a first source gas, comprising a dopant and a halogen is introduced into an ion source chamber, a second source gas comprising a hydride, and a third source gas comprising a noble gas are also introduced. The combination of these three source gases produces an ion beam having a higher percentage of pure dopant ions than would occur if the third source gas were not used.
    Type: Application
    Filed: November 23, 2015
    Publication date: June 9, 2016
    Inventors: Bon-Woong Koo, Vikram M. Bhosle, John A. Frontiero, Nicholas P.T. Bateman, Timothy J. Miller, Svetlana B. Radovanov, Min-Sung Jeon, Peter F. Kurunczi, Christopher J. Leavitt
  • Publication number: 20160144037
    Abstract: The present disclosure provides for an adjuvant composition that is suited for injectable as well as transdermal administration. The adjuvant composition generally comprises a lipophile, a polymer of acrylic or methacrylic acid, saline, cholesterol, a saponin, and sodium hydroxide. A vaccine composition is also provided for that generally includes the vaccine composition of the present disclosure and an antigen. A method for vaccinating animals and humans utilizing the adjuvant composition of the present disclosure is also provided.
    Type: Application
    Filed: November 27, 2015
    Publication date: May 26, 2016
    Inventors: Timothy J Miller, Mary Ann Pfannenstiel
  • Patent number: 9290604
    Abstract: Alkylethoxylate alcohols or mixtures of alkyl alcohol ethoxylate with an average HLB value between 10 and 15 as compatibilizers for water blown polyurethane foam formulations that are substantially free of nonylphenol ethoxylates are disclosed. The HLB is defined as the mass percent of average structure of the compatibilizer that is hydrophilic, divided by 5. The compatibilizer is mixed into the B-side of the polyurethane formulation. The B-side of the spray foam formulations comprise polyol, water, amine catalyst, and the compatibilizer of the invention such that the water is present at about 2% to about 30% by weight of the B-side formulation, and the compatibilizer is present at about 1% to about 30% by weight of the B-side formulation. The B-side of the formulation may further comprise metal catalysts, flame retardants, silicone surfactants, cell openers, antioxidants, as well as other additives.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: March 22, 2016
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Gary Dale Andrew, Jean Louise Vincent, Timothy J. Miller, Goran Zarkov
  • Publication number: 20150380116
    Abstract: A shielding device for shielding an edge of a semiconductor substrate can include a multisided frame defining a perimeter of an enclosed area, and a shield coupled to the frame. The shield may be configured to move between a first position where the shield is retracted to the perimeter and a second position where shield advanced into the enclosed area. A method for processing a semiconductor substrate includes placing a semiconductor substrate in position in an implantation chamber, covering edges of the semiconductor substrate by pushing shields into engagement with the edges, performing an ion implantation procedure, and retracting the shields from the edges.
    Type: Application
    Filed: June 27, 2014
    Publication date: December 31, 2015
    Inventors: Aaron P. Webb, Charles T. Carlson, William T. Weaver, Timothy J. Miller, James D. Strassner
  • Publication number: 20150354056
    Abstract: A method of processing a workpiece is disclosed, where the plasma chamber is first coated using a conditioning gas and optionally, a co-gas. The conditioning gas, which is disposed within a conditioning gas container may comprise a hydride of the desired dopant species and a filler gas, where the filler gas is a hydride of a Group 4 or Group 5 element. The remainder of the conditioning gas container may comprise hydrogen gas. Following this conditioning process, a feedgas, which comprises fluorine and the desired dopant species, is introduced to the plasma chamber and ionized. Ions are then extracted from the plasma chamber and accelerated toward the workpiece, where they are implanted without being first mass analyzed. In some embodiments, the desired dopant species may be boron.
    Type: Application
    Filed: June 6, 2014
    Publication date: December 10, 2015
    Inventors: Bon-Woong Koo, Christopher J. Leavitt, John A. Frontiero, Timothy J. Miller, Svetlana B. Radovanov
  • Publication number: 20150266994
    Abstract: Catalyst compositions useful in the production of insulating polyurethane or polyisocyanurate foam are disclosed. The catalyst compositions impart increased stability of a mixture of the catalyst, a halogen-containing blowing agent, and a polyol. These catalyst compositions comprise of at least 10% of a tetraalkylguanidine and at least 10% of a tertiary amine catalyst with an isocyanate reactive group. These improved catalysts can be used with any halogenated blowing agent, and provide substantial stability benefits with the use of hydrofluoroolefins and hydrofluorochloroolefins. In an exemplary embodiment, a process includes providing a pre-mix comprising a hydrohaloolefin blowing agent, at least one polyol, water, and a catalyst comprising 10-50% tetra methylguanidine and 10-90% of one or more of an amine catalyst containing an isocyanate reactive group.
    Type: Application
    Filed: October 24, 2013
    Publication date: September 24, 2015
    Inventors: Juan Jesus Burdeniuc, Jean Louise Vincent, Timothy J. Miller
  • Patent number: 9123509
    Abstract: Techniques for plasma processing a substrate are disclosed. In one particular exemplary embodiment, the technique may be realized with a method comprising introducing a feed gas proximate to a plasma source, where the feed gas may comprise a first and second species, where the first and second species have different ionization energies; providing a multi-level RF power waveform to the plasma source, where the multi-level RF power waveform has at least a first power level during a first pulse duration and a second power level during a second pulse duration, where the second power level may be different from the first power level; ionizing the first species of the feed gas during the first pulse duration; ionizing the second species during the second pulse duration; and providing a bias to the substrate during the first pulse duration.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: September 1, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: George D. Papasouliotis, Kamal Hadidi, Helen L. Maynard, Ludovic Godet, Vikram Singh, Timothy J. Miller, Bernard Lindsay
  • Publication number: 20150240023
    Abstract: A composition and process to make polyisocyanurate or polyurethane foam using a catalyst composition comprising at least one bismuth carboxylate catalyst and one or more co-catalysts selected from the group of alkali metal carboxylates and quaternary ammonium carboxylate salts, such that the resultant foam has improved insulation properties. The polyisocyanurate or polyurethane foams produced by this catalyst composition and method are useful for laminated boardstock, construction panels, appliance insulation, and spray-applied insulation.
    Type: Application
    Filed: February 26, 2015
    Publication date: August 27, 2015
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Robert Francis Hoffman, James Douglas Tobias, Jean Louise Vincent, Timothy J. Miller
  • Patent number: 9034743
    Abstract: A method of processing a workpiece is disclosed, where the ion chamber is first coated with the desired dopant species and another species. Following this conditioning process, a feedgas, which comprises fluorine and the desired dopant, is introduced to the chamber and ionized. Ions are then extracted from the chamber and accelerated toward the workpiece, where they are implanted without being first mass analyzed. The other species used during the conditioning process may be a Group 3, 4 or 5 element. The desired dopant species may be boron.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: May 19, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Peter F. Kurunczi, Bon-Woong Koo, John A. Frontiero, William T. Levay, Christopher J. Leavitt, Timothy J. Miller, Vikram M. Bhosle, John W. Graff, Nicholas P T Bateman
  • Publication number: 20150090897
    Abstract: An ion implanter has a coating of low resistivity silicon carbide on one or more of the conductive surfaces that are exposed to ions. For example, ions are generated in an ion source chamber, and the interior surfaces of the walls are coated with low resistivity silicon carbide. Since silicon carbide is hard and resistant to sputtering, this may reduce the amount of contaminant ions that are introduced into the ion beam that is extracted from the ion source chamber. In some embodiments, the extraction electrodes are also coated with silicon carbide to reduce the contaminant ions introduced by these components.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Robert J. Mason, Shardul S. Patel, Robert H. Bettencourt, Timothy J. Miller
  • Publication number: 20150024580
    Abstract: A method of processing a workpiece is disclosed, where the ion chamber is first coated with the desired dopant species and another species. Following this conditioning process, a feedgas, which comprises fluorine and the desired dopant, is introduced to the chamber and ionized. Ions are then extracted from the chamber and accelerated toward the workpiece, where they are implanted without being first mass analyzed. The other species used during the conditioning process may be a Group 3, 4 or 5 element. The desired dopant species may be boron.
    Type: Application
    Filed: November 26, 2013
    Publication date: January 22, 2015
    Inventors: Peter F. Kurunczi, Bon-Woong Koo, John A. Frontiero, William T. Levay, Christopher J. Leavitt, Timothy J. Miller, Vikram M. Bhosle, John W. Graff, Nicholas PT Bateman
  • Publication number: 20150024579
    Abstract: A method for improving the ion beam quality in an ion implanter is disclosed. In some ion implantation systems, contaminants from the ion source are extracted with the desired ions, introducing contaminants to the workpiece. These contaminants may be impurities in the ion source chamber. This problem is exacerbated when mass analysis of the extracted ion beam is not performed, and is further exaggerated when the desired feedgas includes a halogen. The introduction of a diluent gas in the ion chamber may reduce the deleterious effects of the halogen on the inner surfaces of the chamber, reducing contaminants in the extracted ion beam. In some embodiments, the diluent gas may be germane or silane.
    Type: Application
    Filed: November 26, 2013
    Publication date: January 22, 2015
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: John W. Graff, Bon-Woong Koo, John A. Frontiero, Nicholas PT Bateman, Timothy J. Miller, Vikram M. Bhosle