Patents by Inventor Timothy L. Hutcheson

Timothy L. Hutcheson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11356780
    Abstract: A planar coil linear actuator/transducer. A stack of individually driven planar coils are used. A common core passes through the center of the stack of coils. A mobile magnet resides in the core. The coils are selectively energized in order to drive the magnet as desired. It is possible to control both frequency and amplitude by controlling the motion of the magnet. In a preferred embodiment, each planar coil is created as a copper (or other conductive material) trace on a multi-layer printed circuit board.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: June 7, 2022
    Assignee: Florida Institute for Human & Machine Cognition, Inc.
    Inventors: Anil K. Raj, Timothy L. Hutcheson
  • Publication number: 20210099806
    Abstract: A planar coil linear actuator/transducer. A stack of individually driven planar coils are used. A common core passes through the center of the stack of coils. A mobile magnet resides in the core. The coils are selectively energized in order to drive the magnet as desired. It is possible to control both frequency and amplitude by controlling the motion of the magnet. In a preferred embodiment, each planar coil is created as a copper (or other conductive material) trace on a multi-layer printed circuit board.
    Type: Application
    Filed: September 24, 2020
    Publication date: April 1, 2021
    Inventors: Anil K. Raj, Timothy L. Hutcheson
  • Patent number: 8880223
    Abstract: A multisensory interface for a tele-robotic surgical control system. The invention allows the surgeon to use natural gestures and motions to control the actions of end effectors in the robotic surgical apparatus. Multiple feedback mechanisms are provided to allow the physician a more intuitive understanding of what is being controlled, along with a greater situational awareness. Prior art robotic end effectors are inserted into the patient through a small incision—as is already known in the art. The invention presents an improved method of controlling these effectors.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: November 4, 2014
    Assignee: Florida Institute for Human & Maching Cognition
    Inventors: Anil K. Raj, Adrien M. Moucheboeuf, Roger W. Carif, Timothy L. Hutcheson
  • Publication number: 20140018819
    Abstract: A multisensory interface for a tele-robotic surgical control system. The invention allows the surgeon to use natural gestures and motions to control the actions of end effectors in the robotic surgical apparatus. Multiple feedback mechanisms are provided to allow the physician a more intuitive understanding of what is being controlled, along with a greater situational awareness. Prior art robotic end effectors are inserted into the patient through a small incision—as is already known in the art. The invention presents an improved method of controlling these effectors.
    Type: Application
    Filed: July 16, 2012
    Publication date: January 16, 2014
    Inventors: Anil K Raj, Adrien M. Mouchebouef, Roger W. Carif, Timothy L. Hutcheson
  • Patent number: 8316972
    Abstract: An apparatus and a method for robotic control that allows an unbalanced pendulum robot to raise its Center of Mass and balance on two motorized wheels. The robot includes a pair of arms that are connected to the upper body of the robot through motorized joints. The method consists of a series of movements employing the arms of the robot to raise the robot to the upright position. The method comprises a control loop in which the motorized drives are included for dynamic balance of the robot and the control of the arm apparatus. The robot is first configured as a low Center of Mass four-wheeled vehicle, then its Center of Mass is raised using a combination of its wheels and the joint located at the attachment point of the arm apparatus and the robot body, between the rear and front wheels; the method then applies accelerations to the rear wheels to dynamically pivot and further raise the Center of Mass up and over the main drive wheels bringing the robot into a balancing pendulum configuration.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: November 27, 2012
    Assignee: Florida Institute for Human and Machine Cognition
    Inventors: Timothy L. Hutcheson, Jerry E. Pratt
  • Publication number: 20120016520
    Abstract: An apparatus and a method for robotic control that allows an unbalanced pendulum robot to raise its Center of Mass and balance on two motorized wheels. The robot includes a pair of arms that are connected to the upper body of the robot through motorized joints. The method consists of a series of movements employing the arms of the robot to raise the robot to the upright position. The method comprises a control loop in which the motorized drives are included for dynamic balance of the robot and the control of the arm apparatus. The robot is first configured as a low Center of Mass four-wheeled vehicle, then its Center of Mass is raised using a combination of its wheels and the joint located at the attachment point of the arm apparatus and the robot body, between the rear and front wheels; the method then applies accelerations to the rear wheels to dynamically pivot and further raise the Center of Mass up and over the main drive wheels bringing the robot into a balancing pendulum configuration.
    Type: Application
    Filed: August 5, 2010
    Publication date: January 19, 2012
    Inventors: Timothy L. Hutcheson, Jerry E. Pratt
  • Publication number: 20110190935
    Abstract: An apparatus and a method for robotic control that allows an unbalanced pendulum robot to raise its Center of Mass and balance on two motorized wheels. The robot includes a pair of arms that are connected to the upper body of the robot through motorized joints. The method consists of a series of movements employing the arms of the robot to raise the robot to the upright position. The method comprises a control loop in which the motorized drives are included for dynamic balance of the robot and the control of the arm apparatus. The robot is first configured as a low Center of Mass four-wheeled vehicle, then its Center of Mass is raised using a combination of its wheels and the joint located at the attachment point of the arm apparatus and the robot body, between the rear and front wheels; the method then applies accelerations to the rear wheels to dynamically pivot and further raise the Center of Mass up and over the main drive wheels bringing the robot into a balancing pendulum configuration.
    Type: Application
    Filed: August 5, 2010
    Publication date: August 4, 2011
    Inventors: Timothy L. Hutcheson, Jerry E. Pratt
  • Patent number: 7798264
    Abstract: An apparatus and a method for robotic control that allows an unbalanced pendulum robot to raise its Center of Mass and balance on two motorized wheels. The robot includes a pair of arms that are connected to the upper body of the robot through motorized joints. The method consists of a series of movements employing the arms of the robot to raise the robot to the upright position. The method comprises a control loop in which the motorized drives are included for dynamic balance of the robot and the control of the arm apparatus. The robot is first configured as a low Center of Mass four-wheeled vehicle, then its Center of Mass is raised using a combination of its wheels and the joint located at the attachment point of the arm apparatus and the robot body, between the rear and front wheels; the method then applies accelerations to the rear wheels to dynamically pivot and further raise the Center of Mass up and over the main drive wheels bringing the robot into a balancing pendulum configuration.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: September 21, 2010
    Inventors: Timothy L. Hutcheson, Jerry E. Pratt
  • Publication number: 20080105481
    Abstract: An apparatus and a method for robotic control that allows an unbalanced pendulum robot to raise its Center of Mass and balance on two motorized wheels. The robot includes a pair of arms that are connected to the upper body of the robot through motorized joints. The method consists of a series of movements employing the arms of the robot to raise the robot to the upright position. The method comprises a control loop in which the motorized drives are included for dynamic balance of the robot and the control of the arm apparatus. The robot is first configured as a low Center of Mass four-wheeled vehicle, then its Center of Mass is raised using a combination of its wheels and the joint located at the attachment point of the arm apparatus and the robot body, between the rear and front wheels; the method then applies accelerations to the rear wheels to dynamically pivot and further raise the Center of Mass up and over the main drive wheels bringing the robot into a balancing pendulum configuration.
    Type: Application
    Filed: November 2, 2006
    Publication date: May 8, 2008
    Inventors: Timothy L. Hutcheson, Jerry E. Pratt
  • Patent number: 5502306
    Abstract: There is disclosed numerous embodiments of a method and apparatus for a particle scanning system and an automatic inspection system. In each of these a particle beam is directed at the surface of a substrate for scanning that substrate. Also included are a selection of detectors to detect at least one of the secondary particles, back-scattered particles and transmitted particles from the substrate. The substrate is mounted on an x-y stage to provide it with at least one degree of freedom while the substrate is being scanned by the/particle beam. The substrate is also subjected to an electric field on it's surface to accelerate the secondary particles. The system also has the capability to accurately measure the position of the substrate with respect to the charged particle beam. Additionally, there is an optical alignment means for initially aligning the substrate beneath the,particle beam means.
    Type: Grant
    Filed: March 17, 1994
    Date of Patent: March 26, 1996
    Assignee: KLA Instruments Corporation
    Inventors: Dan Meisburger, Alan D. Brodie, Curt Chadwick, Anil Desai, Hans Dohse, Dennis Emge, John Greene, Ralph Johnson, Ming-Yie Ling, John McMurtry, Barry Becker, Ray Paul, Mike Robinson, Richard Simmons, David E. A. Smith, John Taylor, Lee Veneklasen, Dean Walters, Paul Wieczorek, Sam Wong, April Dutta, Surendra Lele, Kirkwood Rough, Henry Pearce-Percy, Jack Y. Jau, Chun C. Lin, Hoi T. Nguyen, Yen-Jen Oyang, Timothy L. Hutcheson, David J. Clark, Chung-Shih Pan, Chetana Bhaskar, Chris Kirk, Eric Munro
  • Patent number: 5465308
    Abstract: A method and apparatus under software control for pattern recognition utilizes a neural network implementation to recognize two dimensional input images which are sufficiently similar to a database of previously stored two dimensional images. Images are first image processed and subjected to a Fourier transform which yields a power spectrum. An in-class to out-of-class study is performed on a typical collection of images in order to determine the most discriminatory regions of the Fourier transform. A feature vector consisting of the highest order (most discriminatory) magnitude information from the power spectrum of the Fourier transform of the image is formed. Feature vectors are input to a neural network having preferably two hidden layers, input dimensionality of the number of elements in the feature vector and output dimensionality of the number of data elements stored in the database. Unique identifier numbers are preferably stored along with the feature vector.
    Type: Grant
    Filed: August 25, 1993
    Date of Patent: November 7, 1995
    Assignee: Datron/Transoc, Inc.
    Inventors: Timothy L. Hutcheson, Wilson Or, Venkatesh Narayanan, Subramaniam Mohan, Peter G. Wohlmut, Ramanujam Srinivasan, Bobby R. Hunt, Thomas W. Ryan
  • Patent number: 5274714
    Abstract: A pattern recognition method and apparatus utilizes a neural network to recognize input images which are sufficiently similar to a database of previously stored images. Images are first processed and subjected to a Fourier transform which yields a power spectrum. An in-class to out-of-class study is performed on a typical collection of images in order to determine the most discriminatory regions of the Fourier transform. A feature vector consisting of the (most discriminatory) information from the power spectrum of the Fourier transform of the image is formed. Feature vectors are input to a neural network having preferably two hidden layers, input dimensionality of the number of elements in the feature vector and output dimensionality of the number of data elements stored in the database. Unique identifier numbers are preferably stored along with the feature vector. Application of a query feature vector to the neural network results in an output vector.
    Type: Grant
    Filed: July 23, 1992
    Date of Patent: December 28, 1993
    Assignee: Neuristics, Inc.
    Inventors: Timothy L. Hutcheson, Wilson Or, Venkatesh Narayanan, Subramaniam Mohan, Peter G. Wohlmut, Ramanujam Srinivasan, Bobby R. Hunt, Thomas W. Ryan
  • Patent number: 5161204
    Abstract: A method and apparatus under software control for pattern recognition utilizes a neural network implementation to recognize two dimensional input images which are sufficiently similar to a database of previously stored two dimensional images. Images are first image processed and subjected to a Fourier transform which yields a power spectrum. An in-class to out-of-class study is performed on a typical collection of images in order to determine the most discriminatory regions of the Fourier transform. A feature vector consisting of the highest order (most discriminatory) magnitude information from the power spectrum of the Fourier transform of the image is formed. Feature vectors are input to a neural network having preferably two hidden layers, input dimensionality of the number of elements in the feature vector and output dimensionality of the number of data elements stored in the database. Unique identifier numbers are preferably stored along with the feature vector.
    Type: Grant
    Filed: June 4, 1990
    Date of Patent: November 3, 1992
    Assignee: Neuristics, Inc.
    Inventors: Timothy L. Hutcheson, Wilson Or, Venkatesh Narayanan, Subramaniam Mohan, Peter G. Wohlmut, Ramanujam Srinivasan, Bobby R. Hunt, Thomas W. Ryan