Patents by Inventor Timothy Paul Bodiya

Timothy Paul Bodiya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240126089
    Abstract: A waveguide includes an outcoupler with a dual reflective facet configuration. The dual reflective facet configuration includes a first set of reflective facets to receive light from a first direction and reflect the light incident thereon to an outcoupling direction. The dual reflective facet configuration also includes a second set of reflective facets to receive light from a second direction and reflect the light incident thereon to the outcoupling direction.
    Type: Application
    Filed: October 11, 2023
    Publication date: April 18, 2024
    Inventors: Daniel Adema, Timothy Paul Bodiya
  • Patent number: 11960094
    Abstract: A wearable heads-up display includes a power source, laser sources, and a lightguide. A photodetector is positioned to detect an intensity of a test light emitted at a perimeter of the lightguide from an optical path within the lightguide. A laser safety circuit provides a control to reduce or shut off a supply of electrical power from the power source to the laser sources in response to an output signal from the photodetector indicating that the detected intensity is below a threshold.
    Type: Grant
    Filed: January 6, 2023
    Date of Patent: April 16, 2024
    Assignee: GOOGLE LLC
    Inventors: Stuart James Myron Nicholson, Timothy Paul Bodiya
  • Publication number: 20240118478
    Abstract: A waveguide including first and second sections has a first molded optic material forming a portion of the geometry of one or more Bragg gratings disposed on one surface of the first section of the waveguide. Similarly, a second molded optic material forming another portion of the geometry of one or more Bragg gratings is disposed on one surface of the second section of the waveguide. Further, a photopolymer material is deposited on the first molded optic material. As the first and second sections are coupled, a waveguide is formed with a layer of photopolymer material disposed in the waveguide with the layer of photopolymer material having a geometry defined by the first and second molded optic materials. Bragg grating holograms are then recorded in the layer of photopolymer material, resulting in a waveguide with a plurality of Bragg gratings.
    Type: Application
    Filed: October 11, 2022
    Publication date: April 11, 2024
    Inventors: Jamie Elizabeth Kowalski, Shreyas Potnis, Rhys Anderson, Kirill Afanasev, Eliezer Glik, Timothy Paul Bodiya, Victor Isbrucker
  • Publication number: 20240103270
    Abstract: Systems, devices, and methods for directing display light employ one or more optical combiners that include recycle optics such as diffraction gratings, which can receive wasted display light travelling in a volume of an optical combiner, and redirect the wasted display light towards other optics so the wasted display light may be effectively used to produce a display. The optical combiners may also include a uniformization optic which can redistribute non-uniform display light, to produce a more uniform display, which in turn enables higher efficiency optics to be used.
    Type: Application
    Filed: November 4, 2020
    Publication date: March 28, 2024
    Inventors: Shreyas Potnis, Timothy Paul Bodiya
  • Patent number: 11921292
    Abstract: Systems, devices, and methods for eyebox expansion in wearable heads-up displays (“WHUDs”) are described. The WHUDs described herein each include a projector and an optical waveguide positioned in an optical path between the projector and an eye of the user. For any given light signal from the projector, the optical waveguide receives the light signal at an input coupler and outputs multiple instances or copies of the light signal from multiple discrete, spatially-separated output couplers. The multiple instances or copies of the light signal may be converged by the optical waveguide directly to respective exit pupils at the user's eye or may be routed by the optical waveguide to a holographic combiner in the user's field of view from which the light signals may be converged to respective exit pupils at the user's eye. The optical waveguide employs exit pupil replication to expand the eyebox of the WHUD.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: March 5, 2024
    Assignee: GOOGLE LLC
    Inventors: Stuart James Myron Nicholson, Timothy Paul Bodiya, Stefan Alexander
  • Publication number: 20240073547
    Abstract: Systems and techniques are described for generating a color image by computationally combining chromatically undersampled and shifted information present in multiple component image frames captured via a sparse color filter array that includes a minority of wavelength-filtered picture elements and a remaining majority of panchromatic picture elements. A burst capture is initiated of multiple image frames via a color filter array comprising a plurality of subunits, each subunit including a minority of one or more wavelength-filtered adjacent pixels and a majority of remaining panchromatic pixels. Each of the multiple image frames is processed to generate a resulting color image.
    Type: Application
    Filed: January 21, 2021
    Publication date: February 29, 2024
    Inventors: Stuart James Myron Nicholson, Steven Benjamin Goldberg, Timothy Paul Bodiya
  • Patent number: 11892649
    Abstract: Improved systems ensuring an accuracy of eye gaze measurements in an augmented reality head-mounted wearable device include a radiation direction rerouter (e.g., a partial retroreflector) configured to adjust an angle of incidence of the radiation in the waveguide at a first surface of a waveguide to produce radiation directed at an adjusted angle of incidence at an outcoupler such that the output direction is essentially parallel to the gaze angle of the user's eye. For example, a partial retroreflector may be disposed on a surface of the waveguide opposite the outcoupler provides an additional reflection so that the gaze angle of the user's eye is matched to an angle of an image of the eye pupil onto a world-facing radiation detector (e.g., a camera).
    Type: Grant
    Filed: April 7, 2023
    Date of Patent: February 6, 2024
    Assignee: Google LLC
    Inventors: Daniel Adema, Timothy Paul Bodiya
  • Publication number: 20230333370
    Abstract: There is provided a method of operating a wearable heads-up display (WHUD), which method includes generating first and second lights having respectively first and second wavelengths within about 50 nm of one another. The method also includes directing the first and second lights onto an incoupler of a display optic of the WHUD along first and second ranges of input angles respectively. The first and second ranges of input angles correspond to positions of pixels of first and second portions of an image to be displayed by the WHUD. The incoupler has first and second angular bandwidths corresponding to the first and second wavelengths respectively. A combination of the first and second ranges of input angles is larger than each of the first and second angular bandwidths. Moreover, the method includes directing the first and second lights into a field of view of a user to form the image.
    Type: Application
    Filed: June 23, 2023
    Publication date: October 19, 2023
    Inventors: Timothy Paul Bodiya, Shreyas Potnis
  • Patent number: 11789274
    Abstract: There is provided a method of operating a wearable heads-up display (WHUD). The WHUD may include a light source, a spatial modulator, and a display optic. The method may include generating, by the light source, an output light to form an image viewable by a user of the WHUD. The method may also include receiving a position of a pupil of the user relative to an eyebox of the WHUD, and obtaining an image correction map based on the position of the pupil. Moreover, the method may include adjusting the output light to form an adjusted output light. The adjusted output light may be adjusted based on the image correction map to reduce at least one of an intensity non-uniformity and a color balance non-uniformity of the image. The method may also include directing, by the display optic, the adjusted output light into a field of view of the user.
    Type: Grant
    Filed: May 18, 2022
    Date of Patent: October 17, 2023
    Assignee: GOOGLE LLC
    Inventors: Timothy Paul Bodiya, Shreyas Potnis, Stuart James Myron Nicholson, Bergen Fletcher
  • Publication number: 20230324712
    Abstract: Improved augmented reality smartglasses ensure alignment of displays in a head-mounted wearable device such as AR smartglasses by specifying a relationship between material properties of the frame at the shoulder and nose bridge. For example, such a material relationship may be a rigidity and/or stiffness characteristic. In some implementations, the specified relationship is that a difference between the first bending stiffness and the second bending stiffness is less than a tolerance (e.g., 5%, 1%, or less than 1%).
    Type: Application
    Filed: April 7, 2023
    Publication date: October 12, 2023
    Inventors: Daniel Adema, Timothy Paul Bodiya
  • Publication number: 20230324703
    Abstract: Improved systems ensuring an accuracy of eye gaze measurements in an augmented reality head-mounted wearable device include a radiation direction rerouter (e.g., a partial retroreflector) configured to adjust an angle of incidence of the radiation in the waveguide at a first surface of a waveguide to produce radiation directed at an adjusted angle of incidence at an outcoupler such that the output direction is essentially parallel to the gaze angle of the user's eye. For example, a partial retroreflector may be disposed on a surface of the waveguide opposite the outcoupler provides an additional reflection so that the gaze angle of the user's eye is matched to an angle of an image of the eye pupil onto a world-facing radiation detector (e.g., a camera).
    Type: Application
    Filed: April 7, 2023
    Publication date: October 12, 2023
    Inventors: Daniel Adema, Timothy Paul Bodiya
  • Patent number: 11782276
    Abstract: Systems and methods to reduce light loss from a waveguide. The system includes a waveguide having an incoupler to direct light into the waveguide and a laser projector having laser diodes mounted to a substrate. The laser projector is configured to provide a plurality of laser light beams to the incoupler of the waveguide. The system further includes at least one alignment component configured to align the plurality of laser light beams tangent with an edge of the incoupler to minimize light lost from the waveguide through contact with the incoupler more than once.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: October 10, 2023
    Assignee: GOOGLE LLC
    Inventors: Daniel Adema, Timothy Paul Bodiya, Shreyas Potnis
  • Publication number: 20230296822
    Abstract: A system includes a feedback loop that includes a light engine to generate light, a light engine controller to control operation of the light engine, a scanning device to scan a light beam across a range of scan angles to an incoupler of a waveguide, a photo-sensor to measure an amount of light outcoupled through the incoupler of the waveguide at the range of incident angles. The light engine controller adjusts one or more of a pulse duration, a phase, or a pulse frequency of the scanned light, based on an incident angle of the scanned light and the measured amount of light.
    Type: Application
    Filed: March 16, 2022
    Publication date: September 21, 2023
    Inventors: Shreyas Potnis, Timothy Paul Bodiya, Dan Adema
  • Patent number: 11747585
    Abstract: An optical combiner includes a lightguide having an input region, an output region, a relay region intermediate between the input region and the output region, and one or more stress raisers positioned to define a line of weakness in the lightguide. The line of weakness is intermediate between the input region and the output region and extends across the relay region. An in-coupler is disposed at the input region to receive an incident light with a field of view and couple the incident light into the lightguide. An out-coupler is disposed at the output region to couple light out of the lightguide. The optical combiner may be integrated with one or more lenses for use as a combiner lens in a wearable heads-up display.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: September 5, 2023
    Assignee: GOOGLE LLC
    Inventors: Timothy Paul Bodiya, Daniel Robert Adema, Syed Moez Haque, Andrew S. Logan, Dwayne Wasylyshyn
  • Patent number: 11726319
    Abstract: There is provided a method of operating a wearable heads-up display (WHUD), which method includes generating first and second lights having respectively first and second wavelengths within about 50 nm of one another. The method also includes directing the first and second lights onto an incoupler of a display optic of the WHUD along first and second ranges of input angles respectively. The first and second ranges of input angles correspond to positions of pixels of first and second portions of an image to be displayed by the WHUD. The incoupler has first and second angular bandwidths corresponding to the first and second wavelengths respectively. A combination of the first and second ranges of input angles is larger than each of the first and second angular bandwidths. Moreover, the method includes directing the first and second lights into a field of view of a user to form the image.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: August 15, 2023
    Assignee: GOOGLE LLC
    Inventors: Timothy Paul Bodiya, Shreyas Potnis
  • Publication number: 20230215304
    Abstract: A display system varies a size of a field of view area of a display for augmented reality (AR) applications based on at least one of ambient light in the environment and content displayed at the display and varying a brightness level of the field of view area such that the brightness level within the field of view area is inversely proportional to the field of view area. Based on an amount of ambient light detected in the environment of the display system, the display system adjusts the size of the area of the field of view of the display in inverse proportion to the amount of detected ambient light. As the size of the field of view area decreases, the display system increases the brightness level of the display within the field of view such that the brightness level is approximately inversely proportional to the field of view area.
    Type: Application
    Filed: December 14, 2020
    Publication date: July 6, 2023
    Inventors: Stuart James Myron Nicholson, Timothy Paul Bodiya, Daniel Adema, Shreyas Potnis
  • Patent number: 11668931
    Abstract: Systems, devices, and methods for for exit pupil expansion in a curved lens with embedded light guide are described. Exit pupil expansion in a curved lens may be achieved with a light guide comprising an outcoupler with minimized second order diffraction, where the outcoupler applies an optical power to outcoupled light.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: June 6, 2023
    Assignee: GOOGLE LLC
    Inventors: Thibault Louis David Leportier, Timothy Paul Bodiya
  • Publication number: 20230152593
    Abstract: A wearable heads-up display includes a power source, laser sources, and a lightguide. A photodetector is positioned to detect an intensity of a test light emitted at a perimeter of the lightguide from an optical path within the lightguide. A laser safety circuit provides a control to reduce or shut off a supply of electrical power from the power source to the laser sources in response to an output signal from the photodetector indicating that the detected intensity is below a threshold.
    Type: Application
    Filed: January 6, 2023
    Publication date: May 18, 2023
    Inventors: Stuart James Myron Nicholson, Timothy Paul Bodiya
  • Patent number: 11630318
    Abstract: There is provided an optical element which includes a medium including a diffractive optical element (DOE). The medium is to receive a beam of light via a light guide. If the beam is incident upon the medium at an incidence angle within a first range of angles, the DOE is to direct a first portion of the beam out of the light guide along a second direction to form an outcoupled beam, and cause a second portion of the beam to propagate towards a surface of the light guide. Furthermore, if the incidence angle is within a second range of angles, the DOE is to split from the beam a third portion and a fourth portion each propagating towards the surface of the light guide. The third and fourth portions are to propagate along a third and a fourth direction respectively, which third direction is different than the fourth direction.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: April 18, 2023
    Assignee: GOOGLE LLC
    Inventors: Shreyas Potnis, Timothy Paul Bodiya
  • Patent number: 11567322
    Abstract: Systems, devices, and methods for expanding the eyebox of a wearable heads-up display are described. A light guide with an expanded eyebox includes a light guide material, an in-coupler, an outcoupler, and a gradient refractive index (GRIN) material. The in-coupler and the out-coupler may comprise a GRIN material. An eyeglass lens with expanded eyebox includes a light guide with expanded eyebox. A wearable heads-up display includes an eyeglass lens including a light guide with an expanded eyebox.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: January 31, 2023
    Assignee: GOOGLE LLC
    Inventors: Jackie Lynn Mills, Shreyas Potnis, Timothy Paul Bodiya