Patents by Inventor Timothy T. Bomstad

Timothy T. Bomstad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230024041
    Abstract: Separator and electrolyte composites include a porous self-supporting separator film between or adjacent one or two electrolyte films. The electrolyte films may contain a glyme or mixture of glymes, LiX salt and complexing agent, such as PEO. The porous self-supporting separator film may be used dry or wetted with a liquid electrolyte composition. Solid state batteries include the described separator and electrolyte composites in combination with an anode and a cathode.
    Type: Application
    Filed: August 11, 2022
    Publication date: January 26, 2023
    Inventors: Hui Ye, Timothy T. Bomstad, Parthasarathy M. Gomadam, Gaurav Jain, Christian S. Nielsen, Prabhakar A. Tamirisa, Collette M. Vanelzen
  • Publication number: 20220370811
    Abstract: A battery comprising a tubular battery housing having a first end and a second end. The first end and the second end can have a substantially same inner diameter and a substantially same outer diameter. The battery further comprises a battery cell within the tubular battery housing. The battery further comprises a top battery cover coupled to the first end and a bottom battery cover coupled to the second end to form a substantially sealed enclosure around the battery cell. Method for manufacturing the battery are also described.
    Type: Application
    Filed: May 19, 2021
    Publication date: November 24, 2022
    Inventors: Joseph J. Viavattine, Christopher T. Stockton, Hailiang Zhao, Timothy T. Bomstad, Jude M. Mallawaaratchy, George Patras
  • Patent number: 11437649
    Abstract: Separator and electrolyte composites include a porous self-supporting separator film between or adjacent one or two electrolyte films. The electrolyte films may contain a glyme or mixture of glymes, LiX salt and complexing agent, such as PEO. The porous self-supporting separator film may be used dry or wetted with a liquid electrolyte composition. Solid state batteries include the described separator and electrolyte composites in combination with an anode and a cathode.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: September 6, 2022
    Assignee: Medtronic, Inc.
    Inventors: Hui Ye, Timothy T. Bomstad, Parthasarathy M. Gomadam, Gaurav Jain, Christian S. Nielsen, Prabhakar A. Tamirisa, Collette M. VanElzen
  • Publication number: 20220135311
    Abstract: An apparatus having a foil pack defining a device enclosure and a fluid conduit defining a fluid channel. The device enclosure may be configured to hold an energy storage device such as a battery or capacitor. The fluid conduit defines a fluid channel configured to allow a flow from the device enclosure through a test port defined by the fluid conduit. The apparatus is configured to establish a vacuum in the device enclosure when a vacuum is established in the fluid channel (e.g., during leak testing of the device enclosure). A scaffolding within the fluid conduit is configured to configured to resist a collapse of the fluid channel when the vacuum is established in the fluid channel.
    Type: Application
    Filed: November 1, 2021
    Publication date: May 5, 2022
    Inventors: Christian S. Nielsen, Timothy T. Bomstad, Lance B. Lohstreter, John D. Norton, Mark E. Viste, Paul B. Young
  • Publication number: 20190280336
    Abstract: Separator and electrolyte composites include a porous self-supporting separator film between or adjacent one or two electrolyte films. The electrolyte films may contain a glyme or mixture of glymes, LiX salt and complexing agent, such as PEO. The porous self-supporting separator film may be used dry or wetted with a liquid electrolyte composition. Solid state batteries include the described separator and electrolyte composites in combination with an anode and a cathode.
    Type: Application
    Filed: May 23, 2019
    Publication date: September 12, 2019
    Inventors: Hui YE, Timothy T. BOMSTAD, Parthasarathy M. GOMADAM, Gaurav JAIN, Christian S. Nielsen, Prabhakar A. TAMIRISA, Collette M. VANELZEN
  • Patent number: 10333173
    Abstract: Separator and electrolyte composites include a porous self-supporting separator film between or adjacent one or two electrolyte films. The electrolyte films may contain a glyme or mixture of glymes, LiX salt and complexing agent, such as PEO. The porous self-supporting separator film may be used dry or wetted with a liquid electrolyte composition. Solid state batteries include the described separator and electrolyte composites in combination with an anode and a cathode.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: June 25, 2019
    Assignee: Medtronic, Inc.
    Inventors: Hui Ye, Timothy T. Bomstad, Parthasarathy M. Gomadam, Gaurav Jain, Christian S. Nielsen, Prabhakar A. Tamirisa, Collette M. Vanelzen
  • Publication number: 20160141718
    Abstract: Separator and electrolyte composites are disclosed. The composites include a porous self-supporting separator film between or adjacent one or two electrolyte films. The electrolyte films may contain a glyme or mixture of glymes, LiX salt and complexing agent, such as PEO. The porous self-supporting separator film may be used dry or wetted with a liquid electrolyte composition. Solid state batteries using the described separator and electrolyte composites in combination with an anode and a cathode are also disclosed.
    Type: Application
    Filed: November 11, 2015
    Publication date: May 19, 2016
    Inventors: Hui YE, Timothy T. BOMSTAD, Parthasarathy M. GOMADAM, Gaurav JAIN, Christian S. NIELSEN, Prabhakar A. TAMIRISA, Collette M. VANELZEN
  • Patent number: 8848340
    Abstract: An energy storage device includes a first conductor having a first surface and a second surface. The energy storage device also includes a second conductor and a separator assembly that encloses the first conductor and that is disposed between the first and second conductors. The separator assembly also includes a first portion that covers the first surface and a second portion that covers the second surface. The first and second portions are attached to one another, and at least one of the first and second portions includes a first sheet and a second sheet that are attached to one another. The first sheet includes a first material, and the second sheet includes a second material that is different from the first material.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: September 30, 2014
    Assignee: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Timothy T. Bomstad, Frank T. Greenwald
  • Patent number: 8825160
    Abstract: A complex connector and component within an implantable medical device in which the complex connector is positioned within the spacing footprint of the component to optimize packaging within the device.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: September 2, 2014
    Assignee: Medtronic, Inc.
    Inventors: Angela Rodgers, Andrew J Ries, Kurt J Casby, John D Norton, Mark D Breyen, Dan D Erklouts, Brian J Ross, Timothy T Bomstad, Wayne L Appleseth, Michael E Clarke, Jeffrey L Kehn, Scott J Robinson
  • Publication number: 20130238071
    Abstract: A complex connector and component within an implantable medical device in which the complex connector is positioned within the spacing footprint of the component to optimize packaging within the device.
    Type: Application
    Filed: February 26, 2013
    Publication date: September 12, 2013
    Applicant: Medtronic, Inc.
    Inventors: Angela Rodgers, Andrew J. Ries, Kurt J. Casby, John D. Norton, Mark D. Breyen, Dan D. Erklouts, Brian J. Ross, Timothy T. Bomstad, Wayne L. Appleseth, Michael E. Clarke, Jeffrey L. Kehn, Scott J. Robinson
  • Patent number: 8451015
    Abstract: A method of testing an electrical component includes coupling the electrical component to at least a first probe, a second probe, and a third probe. The probes are in communication with a test control module. Furthermore, the method includes confirming that the probes are in sufficient electrical connection with the electrical component by allowing the test control module to supply a current through the electrical component via the first probe and the third probe, and simultaneously detecting a potential difference across the electrical component by the second probe and the third probe. Furthermore, the method includes testing a performance characteristic of the electrical component by supplying a redundant signal to the electrical component via at least two of the first probe, the second probe, and the third probe.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: May 28, 2013
    Assignee: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Timothy T. Bomstad
  • Patent number: 8386044
    Abstract: A complex connector and component within an implantable medical device in which the complex connector is positioned within the spacing footprint of the component to optimize packaging within the device.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: February 26, 2013
    Assignee: Medtronic, Inc.
    Inventors: Angela Rodgers, Andrew J. Ries, Kurt J. Casby, John D. Norton, Mark D. Breyen, Dan D. Erklouts, Brian J. Ross, Timothy T. Bomstad, Wayne L. Appleseth, Michael E. Clarke, Jeffrey L. Kehn, Scott J. Robinson
  • Patent number: 8376206
    Abstract: A cold weld is formed in a multilayer-material. A first pin is coupled to a first block. A second pin is coupled to a second block. The multilayer material is disposed between the first pin and the second pin. The first pin opposes the second pin. The multilayer material is held in the XY plane and floats in the Z axis.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: February 19, 2013
    Assignee: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Timothy T. Bomstad, Anthony M. Chasensky
  • Publication number: 20120250223
    Abstract: An energy storage device includes a first conductor having a first surface and a second surface. The energy storage device also includes a second conductor and a separator assembly that encloses the first conductor and that is disposed between the first and second conductors. The separator assembly also includes a first portion that covers the first surface and a second portion that covers the second surface. The first and second portions are attached to one another, and at least one of the first and second portions includes a first sheet and a second sheet that are attached to one another. The first sheet includes a first material, and the second sheet includes a second material that is different from the first material.
    Type: Application
    Filed: June 8, 2012
    Publication date: October 4, 2012
    Applicant: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Timothy T. Bomstad, Frank T. Greenwald
  • Patent number: 8249710
    Abstract: At least one storage component, for example a capacitor or a battery, of an implantable medical device includes two perimeter surfaces. Linear extensions of the two perimeter surfaces define a zone. An electrical connector, which is coupled to the storage component and includes at least one connection point for electrically connecting the storage component with at least one other component within the medical device, is contained within the zone defined by the linear extensions of the two perimeter surfaces.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: August 21, 2012
    Assignee: Medtronic, Inc.
    Inventors: Angela Rodgers, Andrew J. Ries, Kurt J. Casby, John D. Norton, Mark D. Breyen, Dan D. Erklouts, Brian J. Ross, Timothy T. Bomstad, Wayne L. Appleseth, Michael E. Clarke, Jeffrey L. Kehn, Scott J. Robinson
  • Patent number: 8199459
    Abstract: An energy storage device includes a first conductor having a first surface and a second surface. The energy storage device also includes a second conductor and a separator assembly that encloses the first conductor and that is disposed between the first and second conductors. The separator assembly also includes a first portion that covers the first surface and a second portion that covers the second surface. The first and second portions are attached to one another, and at least one of the first and second portions includes a first sheet and a second sheet that are attached to one another. The first sheet includes a first material, and the second sheet includes a second material that is different from the first material.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: June 12, 2012
    Assignee: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Timothy T. Bomstad, Frank T. Greenwald
  • Patent number: 8038048
    Abstract: A cold weld is formed in a multilayer material. A first pin is coupled to a first block. A second pin is coupled to a second block. The multilayer material is disposed between the first pin and the second pin. The first pin opposes the second pin. The multilayer material is held in the XY plane and floats in the Z axis.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: October 18, 2011
    Assignee: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Timothy T. Bomstad, Anthony M. Chasensky
  • Publication number: 20110026188
    Abstract: An energy storage device includes a first conductor having a first surface and a second surface. The energy storage device also includes a second conductor and a separator assembly that encloses the first conductor and that is disposed between the first and second conductors. The separator assembly also includes a first portion that covers the first surface and a second portion that covers the second surface. The first and second portions are attached to one another, and at least one of the first and second portions includes a first sheet and a second sheet that are attached to one another. The first sheet includes a first material, and the second sheet includes a second material that is different from the first material.
    Type: Application
    Filed: July 30, 2009
    Publication date: February 3, 2011
    Applicant: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Timothy T. Bomstad, Frank T. Greenwald
  • Publication number: 20110025356
    Abstract: A method of testing an electrical component includes coupling the electrical component to at least a first probe, a second probe, and a third probe. The probes are in communication with a test control module. Furthermore, the method includes confirming that the probes are in sufficient electrical connection with the electrical component by allowing the test control module to supply a current through the electrical component via the first probe and the third probe, and simultaneously detecting a potential difference across the electrical component by the second probe and the third probe. Furthermore, the method includes testing a performance characteristic of the electrical component by supplying a redundant signal to the electrical component via at least two of the first probe, the second probe, and the third probe.
    Type: Application
    Filed: July 30, 2009
    Publication date: February 3, 2011
    Applicant: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Timothy T. Bomstad
  • Publication number: 20100297495
    Abstract: An electrochemical cell of an implantable medical device is provided. The electrochemical cell comprises a conductive case and a cover welded to the case to form a hermetically-sealed housing. A cathode is disposed adjacent to a surface of the case within the hermetically-sealed housing and an anode is disposed within the hermetically-sealed housing. An immobilization system is disposed between the anode and the hermetically-sealed housing. The immobilization system is configured to minimize movement of the anode relative to the housing and is adapted to thermally insulate the anode during fabrication of the hermetically-sealed housing.
    Type: Application
    Filed: August 2, 2010
    Publication date: November 25, 2010
    Inventors: Kurt J. Casby, Anthony W. Rorvick, Christian S. Nielsen, Timothy T. Bomstad, David P. Haas, Angela Rodgers