Patents by Inventor Tin-Wee Tan

Tin-Wee Tan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130195904
    Abstract: We identified regions of the HIV-1 proteome with high conservation, and low variant incidence. Such highly conserved sequences have direct relevance to the development of new-generation vaccines and diagnostic applications. The immune relevance of these sequences was assessed by their correlation to previously reported human T-cell epitopes and to recently identified human HIV-1 T-cell epitopes (identified using HLA transgenic mice). We identified (a) sequences specific to HIV-1 with no shared identity to other viruses and organisms, and (b) sequences that are specific to primate lentivirus group, with multiclade HIV-1 conservation.
    Type: Application
    Filed: January 4, 2011
    Publication date: August 1, 2013
    Applicants: NATIONAL UNIVERSITY OF SINGAPORE, THE JOHNS HOPKINS UNIVERSITY
    Inventors: J. Thomas August, Gregory George Simon, Tin Wee Tan, Asif Mohammad Khan, Hu Yongli
  • Publication number: 20130011427
    Abstract: Flaviviruses represent an increasing global public health issue, with no prophylactic and therapeutic formulations currently available for many of them. The combination of factors such as evolutionary change, global warming and wide range of animal hosts suggest the possible occurrence of Flavivirus strains with greater distribution and human pathogenicity. There is, thus, a need for greater understanding of viral protein sequences that function in the human immune responses. The evolutionary diversity of the reported sequences of major flaviviruses, such as dengue virus, yellow fever virus, Japanese encephalitis virus, and West Nile virus were analyzed with a combination of experimental and bioinformatics methodologies. The analysis of all reported sequences revealed that these species-specific peptide tags are highly conserved and are potential T-cell epitopes due to correspondence to known or predicted epitopes.
    Type: Application
    Filed: December 16, 2010
    Publication date: January 10, 2013
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: J. Thomas August, Tin Wee Tan, Asif Mohammad Khan
  • Publication number: 20120294879
    Abstract: Pandemic A(H1N1) continues its global spread, and vaccine production is a serious problem. Protection by current vaccines is limited by the mutational differences that rapidly accumulate in the circulating strains, especially in the virus surface proteins. New vaccine strategies are focusing at conserved regions of the viral internal proteins to produce T cell epitope-based vaccines. T cell responses have been shown to reduce morbidity and promote recovery in mouse models of influenza challenge. We previously reported 54 highly conserved sequences of NP, M1 and the polymerases of all human H1N1, H3N2, H1N2, and H5N1, and avian subtypes over the past 30 years. Sixty-three T cell epitopes elicited responses in HLA transgenic mice (A2, A24, B7, DR2, DR3 and DR4). These epitopes were compared to the 2007-2009 human H1N1 sequences to identify conserved and variant residues.
    Type: Application
    Filed: October 13, 2010
    Publication date: November 22, 2012
    Applicants: NATIONAL UNIVERSITY OF SINGAPORE, THE JOHNS HOPKINS UNIVERSITY
    Inventors: J. Thomas August, Paul ThiamJoo Tan, Tin Wee Tan, Mohammad Asif Khan
  • Patent number: 6446133
    Abstract: A multilingual Domain Name System allows users to use Domain Names in non-Unicode or ASCII encodings. An international DNS server (or iDNS server) receives multilingual DNS requests and converts them to a format that can be used in the conventional Domain Name System. When the iDNS server first receives a DNS request, it determines the encoding type of that request. It may do this by considering the bit string in the top-level domain (or other portion) of the Domain Name and matching that string against a list of known bit strings for known top-level domains of various encoding types. One entry in the list may be the bit string for “.com” in Chinese BIG5, for example. After the iDNS server identifies the encoding type of the Domain Name, it converts the encoding of the Domain Name to Unicode. It then translates the Unicode representation to an ASCII representation conforming to the universal DNS standard.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: September 3, 2002
    Assignee: i-DNS.net International Pte Ltd.
    Inventors: Tin-Wee Tan, Ching Hong Seng, Juay Kwang Tan, Kok Yong Leong, Don Irwin Tracy De Silva, Kuan Siong Lim, Edward S. Tay, Subramanian Subbiah
  • Publication number: 20010047429
    Abstract: A multilingual Domain Name System allows users to use Domain Names in non-Unicode or ASCII encodings. An international DNS server (or iDNS server) receives multilingual DNS requests and converts them to a format that can be used in the conventional Domain Name System. When the iDNS server first receives a DNS request, it determines the encoding type of that request. It may do this by considering the bit string in the top-level domain (or other portion) of the Domain Name and matching that string against a list of known bit strings for known top-level domains of various encoding types. One entry in the list may be the bit string for “.com” in Chinese BIG5, for example. After the iDNS server identifies the encoding type of the Domain Name, it converts the encoding of the Domain Name to Unicode. It then translates the Unicode representation to an ASCII representation conforming to the universal DNS standard.
    Type: Application
    Filed: March 30, 2001
    Publication date: November 29, 2001
    Applicant: i-DNS.net International, Inc.
    Inventors: Ching Hong Seng, Tin-Wee Tan, Juay Kwang Tan, Kok Yong Leong, Don Irwin Tracy De Silva, Kuan Siong Lim, Edward S. Tay, Subramanian Subbiah
  • Patent number: 6314469
    Abstract: A multilingual Domain Name System allows users to use Domain Names in non-Unicode or ASCII encodings. An international DNS server (or iDNS server) receives multilingual DNS requests and converts them to a format that can be used in the conventional Domain Name System. When the iDNS server first receives a DNS request, it determines the encoding type of that request. It may do this by considering the bit string in the top-level domain (or other portion) of the Domain Name and matching that string against a list of known bit strings for known top-level domains of various encoding types. One entry in the list may be the bit string for “.com” in Chinese BIG5, for example. After the iDNS server identifies the encoding type of the Domain Name, it converts the encoding of the Domain Name to Unicode. It then translates the Unicode representation to an ASCII representation conforming to the universal DNS standard.
    Type: Grant
    Filed: February 26, 1999
    Date of Patent: November 6, 2001
    Assignee: i-DNS.net International Pte Ltd
    Inventors: Tin-Wee Tan, Ching Hong Seng, Juay Kwang Tan, Kok Yong Leong, Don Irwin Tracy De Silva, Kuan Siong Lim, Edward S. Tay, Subramanian Subbiah