Patents by Inventor Todd L. Hylton

Todd L. Hylton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6843891
    Abstract: In one embodiment of this invention, the apparatus for sputter deposition within an evacuated volume comprises a compact gridless ion source into which an ionizable gas is introduced and from which ions leave with directed energies at or near the sputtering threshold and a sputter target near that source, biased negative relative to the surrounding vacuum enclosure, and located within the beam of ions leaving that source. Particles sputtered from the target are deposited on a deposition substrate spaced from both the ion source and the sputter target. An energetic beam of electrons can be generated by the incident ions striking the negatively biased sputter target and the deposition substrate is located either within or outside of this beam, depending on whether the net effect of bombardment by energetic electrons is beneficial or detrimental to that particular deposition process.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: January 18, 2005
    Assignees: Kaufman & Robinson, Inc., Veeco Instruments Inc.
    Inventors: James R. Kahn, Harold R. Kaufman, Viacheslav V. Zhurin, David A. Baldwin, Todd L. Hylton
  • Patent number: 6682634
    Abstract: In accordance with one specific embodiment of the present invention, the apparatus for sputter deposition within an evacuated volume comprises a compact ion source to generate ions into which an ionizable gas is introduced and from which ions leave with directed energies near or below the sputtering threshold, a sputter target near that source and located within the beam of ions leaving that source, a sputter target with a grounded shield that defines the target portion exposed to sputtering, and a power supply to bias the target negative relative to ground so that ions are attracted to and sputter the target. Particles sputtered from the target are deposited on a deposition substrate separate from both the ion source and the sputter target. For an insulating target, the target is biased with a radiofrequency power supply and the bias has a mean negative value rather than a direct-current negative value relative to ground.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: January 27, 2004
    Assignees: Kaufman & Robinson, Inc., Veeco Instruments Inc.
    Inventors: James R. Kahn, Harold R. Kaufman, Viacheslav V. Zhurin, David A. Baldwin, Todd L. Hylton
  • Publication number: 20010004047
    Abstract: In one embodiment of this invention, the apparatus for sputter deposition within an evacuated volume comprises a compact gridless ion source into which an ionizable gas is introduced and from which ions leave with directed energies at or near the sputtering threshold and a sputter target near that source, biased negative relative to the surrounding vacuum enclosure, and located within the beam of ions leaving that source. Particles sputtered from the target are deposited on a deposition substrate spaced from both the ion source and the sputter target. An energetic beam of electrons can be generated by the incident ions striking the negatively biased sputter target and the deposition substrate is located either within or outside of this beam, depending on whether the net effect of bombardment by energetic electrons is beneficial or detrimental to that particular deposition process.
    Type: Application
    Filed: January 19, 2001
    Publication date: June 21, 2001
    Applicant: Kaufman & Robinson, Inc.
    Inventors: James R. Kahn, Harold R. Kaufman, Viacheslav V. Zhurin, David A. Baldwin, Todd L. Hylton
  • Patent number: 5629682
    Abstract: A magnetic encoder apparatus for determining the position of a moving object. The encoder has a merged magnetoresistive (MR) head capable of maintaining a magnetic transducing relationship with a magnetic medium on a substrate while there is relative motion between the head and the medium. The merged MR head contains an MR read element and an inductive transducer write element. The inductive transducer write element is capable of writing encoded bits that contain information that defines a position of the substrate. The MR read element is capable of reading these encoded bits and generating an output signal. The output signal is processed by electronic circuitry in order to decipher the position of the moving object that is coupled with the encoder.
    Type: Grant
    Filed: December 20, 1994
    Date of Patent: May 13, 1997
    Assignee: International Business Machines Corporation
    Inventors: Todd L. Hylton, Richard D. Umphress
  • Patent number: 5492775
    Abstract: A high-density recording media comprising longitudinally oriented polycrystalline barium ferrite exhibits large coercivity, corrosion resistance, high hardness and durability. Films are prepared by on-axis sputtering at ambient temperatures from stoichiometric targets followed by a post-deposition anneal at approximately 850.degree.C. to induce crystallization. Crystallization yields a magnetic film with large in-plane remanence and a fine scale texturing that greatly improves the tribological performance of barium ferrite disks. Exceptional durability can be achieved on disks without overcoats. Grain sizes as small as 200 .ANG. are produced by doping with small amounts of Cr.sub.2 O.sub.3 or other additives. Coercivities greater than 4000 Oe are achieved even in small grain films.
    Type: Grant
    Filed: May 28, 1993
    Date of Patent: February 20, 1996
    Assignee: International Business Machines Corporation
    Inventors: Richard H. Ahlert, James K. Howard, Todd L. Hylton, Michael A. Parker, Muhammad I. Ullah
  • Patent number: 5476680
    Abstract: A magnetoresistive read sensor incorporates a granular multilayer sensing element comprising a plurality of layers of generally flat particles of a ferromagnetic material embedded in a nonmagnetic electrically conductive material. A bias layer separated from the magnetoresistive sensing element by a spacer layer provides a magnetic field to bias the magnetoresistive sensing element at a desired non-signal point. The ferromagnetic and the nonmagnetic materials are mutually immiscible, or may be miscible or partially miscible and processed in a manner to control interdiffusion. The magnetoresistive sensing element is formed by alternatively despositing layers of ferromagnetic material and layers of nonmagnetic conductive material on a substrate and then annealing the structure.
    Type: Grant
    Filed: April 14, 1995
    Date of Patent: December 19, 1995
    Assignee: International Business Machines Corporation
    Inventors: Kevin R. Coffey, James K. Howard, Todd L. Hylton, Michael A. Parker
  • Patent number: 5452163
    Abstract: A magnetoresistive read sensor incorporates a multilayer sensing element formed of one or more magnetoresistive elements in a planar array, each magnetoresistive element having a multilayer structure of at least two ferromagnetic layers separated by a nonmagnetic layer. The ferromagnetic layers are coupled antiferromagnetically by magnetostatic coupling at opposing edges of the ferromagnetic layers. A bias layer separated from the magnetoresistive sensing element by a spacer layer provides a magnetic field to bias the magnetoresistive sensing element at a desired non-signal point for linear response. The magnetoresistive sensing element is formed by alternatively depositing layers of ferromagnetic material and layers of nonmagnetic material on a substrate and then patterning the resulting structure using photolithographic techniques to provide a planar array of magnetoresistive elements.
    Type: Grant
    Filed: December 23, 1993
    Date of Patent: September 19, 1995
    Assignee: International Business Machines Corporation
    Inventors: Kevin R. Coffey, Robert E. Fontana, James K. Howard, Todd L. Hylton, Michael A. Parker, Ching H. Tsang