Patents by Inventor Todd Ryan Tolliver

Todd Ryan Tolliver has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8962978
    Abstract: A semiconductor structure is described, including a semiconductor substrate and a semiconductor layer disposed on the semiconductor substrate. The semiconductor layer is both compositionally graded and structurally graded. Specifically, the semiconductor layer is compositionally graded through its thickness from substantially intrinsic at the interface with the substrate to substantially doped at an opposite surface. Further, the semiconductor layer is structurally graded through its thickness from substantially crystalline at the interface with the substrate to substantially amorphous at the opposite surface. Related methods are also described.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: February 24, 2015
    Assignee: General Electric Company
    Inventors: Bastiaan Arie Korevaar, James Neil Johnson, Todd Ryan Tolliver, Theodore Carlton Kreutz, Xiaolan Zhang
  • Patent number: 8294023
    Abstract: A radioisotope power sources that includes radioisotope nanoparticles and scintillator materials. An embodiment of the radioisotope power source includes radioisotope nanoparticles suspended within a polycrystalline scintillator; additional polycrystalline scintillator at least partially surrounding the polycrystalline scintillator with the radioisotope nanoparticles; and a photovoltaic device in light communication with the surrounding polycrystalline scintillator. A system that employs the radioisotope power source and a method of generating an electrical current are also disclosed. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: October 23, 2012
    Assignee: General Electric Company
    Inventors: Brent Allen Clothier, Matthew Christian Nielsen, Todd Ryan Tolliver, Allen Lawrence Garner
  • Publication number: 20110100439
    Abstract: A radioisotope power sources that includes radioisotope nanoparticles and scintillator materials. An embodiment of the radioisotope power source includes radioisotope nanoparticles suspended within a polycrystalline scintillator; additional polycrystalline scintillator at least partially surrounding the polycrystalline scintillator with the radioisotope nanoparticles; and a photovoltaic device in light communication with the surrounding polycrystalline scintillator. A system that employs the radioisotope power source and a method of generating an electrical current are also disclosed. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
    Type: Application
    Filed: October 29, 2009
    Publication date: May 5, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Brent Allen Clothier, Matthew Christian Nielsen, Todd Ryan Tolliver, Allen Lawrence Garner
  • Publication number: 20110067753
    Abstract: A semiconductor structure is described, including a semiconductor substrate and a semiconductor layer disposed on the semiconductor substrate. The semiconductor layer is both compositionally graded and structurally graded. Specifically, the semiconductor layer is compositionally graded through its thickness from substantially intrinsic at the interface with the substrate to substantially doped at an opposite surface. Further, the semiconductor layer is structurally graded through its thickness from substantially crystalline at the interface with the substrate to substantially amorphous at the opposite surface. Related methods are also described.
    Type: Application
    Filed: December 3, 2010
    Publication date: March 24, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Bastiaan Arie Korevaar, James Neil Johnson, Todd Ryan Tolliver, Theodore Carlton Kreutz, Xiaolan Zhang
  • Patent number: 7906723
    Abstract: A semiconductor structure is described, including a semiconductor substrate and a semiconductor layer disposed on the semiconductor substrate. The semiconductor layer is both compositionally graded and structurally graded. Specifically, the semiconductor layer is compositionally graded through its thickness from substantially intrinsic at the interface with the substrate to substantially doped at an opposite surface. Further, the semiconductor layer is structurally graded through its thickness from substantially crystalline at the interface with the substrate to substantially amorphous at the opposite surface. Related methods are also described.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: March 15, 2011
    Assignee: General Electric Company
    Inventors: Bastiaan Arie Korevaar, James Neil Johnson, Todd Ryan Tolliver, Theodore Carlton Kreutz, Xiaolan Zhang
  • Patent number: 7852082
    Abstract: A remote control system for a modulatable device is provided. The remote control system comprises a receiver system coupled to the modulatable device and configured to obtain an output characteristic of the modulatable device, the receiver system being located remotely with respect to the modulatable device. The system further comprises a command signal setting system coupled to the receiver system and configured to use the output characteristic to generate a drive command signal and a bias system coupled to the command signal setting system and configured to receive the drive command signal and set a bias point of the modulatable device based on the drive command signal. The bias system is located locally with respect to the modulatable device. The command signal setting system and the bias system are coupled via a first optical conduit.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: December 14, 2010
    Assignee: General Electric Company
    Inventors: Todd Ryan Tolliver, Joseph Alfred Iannotti, Glen Peter Koste, Selaka Bandara Bulumulla, Richard Louis Frey
  • Publication number: 20100259823
    Abstract: An anti-reflection coating is described. The coating is disposed on a surface of a substrate. The anti-reflection coating includes an array of substantially transparent nanostructures having a primary axis substantially perpendicular to the surface of the substrate. The array of substantially transparent nanostructures is characterized by a graded refractive index. In some embodiments, each of the nanostructures has a substantially uniform cross-sectional area along the primary axis. Related methods and devices are also described.
    Type: Application
    Filed: April 9, 2009
    Publication date: October 14, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Yangang Andrew Xi, Loucas Tsakalakos, Bastiaan Arie Korevaar, Todd Ryan Tolliver, Dalong Zhong
  • Patent number: 7615009
    Abstract: A system and method for optical transmission of ultrasound data signals from a probe to an image processing system is provided. By using a silicon-based optical modulator to encode ultrasound data signals onto an optical signal, an optical transmission link between the ultrasound probe and the image processing system can achieve a high signal to noise ratio with a lower power input.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: November 10, 2009
    Assignee: General Electric Company
    Inventors: Glen P. Koste, Samhita Dasgupta, Matthew Christian Nielsen, Min-Yi Shih, Robert John Filkins, Todd Ryan Tolliver, Bruno Hans Haider
  • Publication number: 20090272435
    Abstract: A semiconductor structure is described, including a semiconductor substrate and a semiconductor layer disposed on the semiconductor substrate. The semiconductor layer is both compositionally graded and structurally graded. Specifically, the semiconductor layer is compositionally graded through its thickness from substantially intrinsic at the interface with the substrate to substantially doped at an opposite surface. Further, the semiconductor layer is structurally graded through its thickness from substantially crystalline at the interface with the substrate to substantially amorphous at the opposite surface. Related methods are also described.
    Type: Application
    Filed: April 30, 2008
    Publication date: November 5, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Bastiaan Arie Korevaar, James Neil Johnson, Todd Ryan Tolliver, Theodore Carlton Kreutz, Xiaolan Zhang
  • Patent number: 7580440
    Abstract: A device for emission of electromagnetic radiation comprises a source of atomic particles and a collector disposed to receive atomic particles from the source. The collector comprises an emission medium, the medium comprising a crystal having a spatial dimension in the range from about 10 nanometers to about 50 micrometers, wherein the emission medium has the capability to generate opposing charge pairs upon absorption of atomic particles from the source and to emit electromagnetic radiation upon recombination of the pairs. The emission may be via spontaneous emission or, in certain embodiments, by stimulated emission. A laser assembly comprising this device, and methods for making the device are also presented herein.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: August 25, 2009
    Assignee: GE Homeland Protection, Inc.
    Inventors: Steven Francis LeBoeuf, Radislav Alexandrovich Potyrailo, William Hullinger Huber, Rui Chen, Todd Ryan Tolliver, Alexei Vasilievich Vertiatchikh
  • Publication number: 20080281185
    Abstract: A remote control system for a modulatable device is provided. The remote control system comprises a receiver system coupled to the modulatable device and configured to obtain an output characteristic of the modulatable device, the receiver system being located remotely with respect to the modulatable device. The system further comprises a command signal setting system coupled to the receiver system and configured to use the output characteristic to generate a drive command signal and a bias system coupled to the command signal setting system and configured to receive the drive command signal and set a bias point of the modulatable device based on the drive command signal. The bias system is located locally with respect to the modulatable device. The command signal setting system and the bias system are coupled via a first optical conduit.
    Type: Application
    Filed: July 22, 2008
    Publication date: November 13, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Todd Ryan Tolliver, Joseph Alfred Iannotti, Glen Peter Koste, Selaka Bandara Bulumulla, Richard Louis Frey
  • Patent number: 7411670
    Abstract: A photonic crystal based collection probe is provided. The probe includes a photonic crystal configured to guide and condition a beam of Raman scattered photons. Further, the device includes a spectrograph in optical communication with the photonic crystal and configured to receive Raman scattering from the photonic crystal. The device may be employed in a Raman spectrometer system.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: August 12, 2008
    Assignee: GE Homeland Protection, Inc.
    Inventors: Anis Zribi, Ayan Banerjee, Shivappa Ningappa Goravar, Shankar (nmn) Chandrasekaran, Sandip Maity, Glenn Scott Claydon, Stacey Joy Kennerly, Todd Ryan Tolliver, David Cecil Hays, Sheila Neumann Tandon, Long Que, Christopher Fred Keimel
  • Patent number: 7394982
    Abstract: A current sensing system comprises a current transformer; a burden resistor connected across a secondary of the current transformer; a piezo-optic sensor coupled to the burden resistor, comprising a piezoelectric transducer, an optical fiber and a first optical filter with a first bandwidth; and an optical interrogator, configured for sending an originating signal to the first bandwidth optical filter and receiving a resulting data signal and a second optical filter with a second bandwidth for filtering the resulting data signal.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: July 1, 2008
    Assignee: General Electric Company
    Inventors: John Michael Kern, Glen Peter Koste, Charles Erklin Seeley, Todd Ryan Tolliver
  • Patent number: 7367945
    Abstract: An ultrasound system includes an ultrasound probe configured for sensing and transmitting ultrasound signals. The ultrasound system further includes an optical conduit configured for coupling a light source and an optical detector in an optical path. The optical conduit includes electro-optic modulators configured for modulating optical signals on the optical conduit with at least one of the electrical signals configured to generate corresponding optically modulated analog signals on the optical conduit. In one example, the electro-optic modulators comprise electro-optic polymer modulators.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: May 6, 2008
    Assignee: General Electric Company
    Inventors: Samhita Dasgupta, Matthew Christian Nielsen, Min-Yi Shih, Robert John Filkins, Todd Ryan Tolliver, Bruno Hans Haider
  • Patent number: 7270442
    Abstract: System and method for monitoring status of a visual signal lamp. The system includes at least one optical fiber comprising a first end and a second end. The first end is positioned proximate to the signal lamp and is oriented to capture a portion of light signal emitted by the signal lamp when the signal lamp is illuminated. The system also includes a photodetector positioned proximate to the second end of the optical fiber and configured to receive the portion of light signal. The system further includes a threshold detection circuitry connected to the photodetector and configured to detect a lighting parameter in relation to the signal lamp according to a predetermined criterion.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: September 18, 2007
    Assignee: General Electric Company
    Inventors: David Michael Davenport, John Erik Hershey, Todd Ryan Tolliver
  • Patent number: 7266269
    Abstract: A power harvesting module comprises at least one electromagnetic (EM) radiation intensity modulator configured to receive a first EM radiation from at least one source and at least one energy converter configured to at least partially convert the energy of the first EM radiation during modulation into electrical energy.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: September 4, 2007
    Assignee: General Electric Company
    Inventors: Glen Peter Koste, Min-Yi Shih, Todd Ryan Tolliver
  • Patent number: 7123015
    Abstract: A magnetic resonance (MR) system and method for generating information about an object is provided. The MR system comprises at least one MR detector configured to sense a plurality of electromagnetic signals and a modulator coupled to the MR detector and configured to modulate optical signals with the electromagnetic signals to generate corresponding modulated optical signals. The MR system further comprises a resonant matching circuit configured for matching an impedance of the MR detector to an impedance of the modulator to achieve at least one of a voltage gain or a noise performance. An optical conduit coupled to the modulator is configured to transmit the modulated optical signals from within a shielded environment to outside the shielded environment. A signal detector coupled to the optical conduit is configured to convert the modulated optical signals to electrical signals.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: October 17, 2006
    Assignee: General Electric Company
    Inventors: Glen Peter Koste, Ronald Dean Watkins, Richard Louis Frey, Matthew Christian Nielsen, Joseph Alfred Iannotti, Todd Ryan Tolliver