Patents by Inventor Toi Yue Becky Leung

Toi Yue Becky Leung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11915932
    Abstract: Exemplary etching methods may include forming a plasma of a fluorine-containing precursor to produce plasma effluents. A first bias frequency may be applied while forming the plasma. The methods may include contacting a substrate housed in a processing region of a semiconductor processing chamber with the plasma effluents. The substrate may be or include a photomask. The methods may include etching a first layer of the photomask. Etching the first layer of the photomask may expose a second layer of the photomask. The methods may include adjusting the first bias frequency to a second bias frequency while maintaining the plasma of the fluorine-containing precursor. The methods may include etching the second layer of the photomask.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: February 27, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Toi Yue Becky Leung, Madhavi Rajaram Chandrachood, Madhava Rao Yalamanchili
  • Publication number: 20220351972
    Abstract: Exemplary etching methods may include forming a plasma of a fluorine-containing precursor to produce plasma effluents. A first bias frequency may be applied while forming the plasma. The methods may include contacting a substrate housed in a processing region of a semiconductor processing chamber with the plasma effluents. The substrate may be or include a photomask. The methods may include etching a first layer of the photomask. Etching the first layer of the photomask may expose a second layer of the photomask. The methods may include adjusting the first bias frequency to a second bias frequency while maintaining the plasma of the fluorine-containing precursor. The methods may include etching the second layer of the photomask.
    Type: Application
    Filed: April 28, 2021
    Publication date: November 3, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Toi Yue Becky Leung, Madhavi Rajaram Chandrachood, Madhava Rao Yalamanchili
  • Publication number: 20100276391
    Abstract: Methods of operating inductively coupled plasma (ICP) reactors having ICP sources and substrate bias with phase control are provided herein. In some embodiments, a method of operating a first plasma reactor having a source RF generator inductively coupled to the first plasma reactor on one side of a substrate support surface of a substrate support within the first plasma reactor and a bias RF generator coupled to the substrate support on an opposing side of the substrate support surface, wherein the source RF generator and the bias RF generator provide respective RF signals at a common frequency may include selecting a desired value of a process parameter for a substrate to be processed; and adjusting the phase between respective RF signals provided by the source RF generator and the bias RF generator to a desired phase based upon a predetermined relationship between the process parameter and the phase.
    Type: Application
    Filed: March 29, 2010
    Publication date: November 4, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: MICHAEL N. GRIMBERGEN, KEVEN KAISHENG YU, ALAN HIROSHI OUYE, MADHAVI R. CHANDRACHOOD, VALENTIN N. TODOROW, TOI YUE BECKY LEUNG, RICHARD LEWINGTON, DARIN BIVENS, RENEE KOCH, IBRAHIM M. IBRAHIM, AMITABH SABHARWAL, AJAY KUMAR
  • Patent number: 7611976
    Abstract: Embodiments of the invention generally provide a method for forming a doped silicon-containing material on a substrate. In one embodiment, the method provides depositing a polycrystalline layer on a dielectric layer and implanting the polycrystalline layer with a dopant to form a doped polycrystalline layer having a dopant concentration within a range from about 1×1019 atoms/cm3 to about 1×1021 atoms/cm3, wherein the doped polycrystalline layer contains silicon or may contain germanium, carbon, or boron. The substrate may be heated to a temperature of about 800° C. or higher, such as about 1,000° C., during the rapid thermal anneal. Subsequently, the doped polycrystalline layer may be exposed to a laser anneal and heated to a temperature of about 1,000° C. or greater, such within a range from about 1,050° C. to about 1,400° C., for about 500 milliseconds or less, such as about 100 milliseconds or less.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: November 3, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Yi Ma, Khaled Z. Ahmed, Kevin L. Cunningham, Robert C. McIntosh, Abhilash J. Mayur, Haifan Liang, Mark Yam, Toi Yue Becky Leung, Christopher Olsen, Shulin Wang, Majeed Foad, Gary Eugene Miner
  • Publication number: 20080179282
    Abstract: Method and apparatus for etching a metal layer disposed on a substrate, such as a photolithographic reticle, are provided. In one embodiment, a method is provided for processing a substrate including positioning a substrate having a metal photomask layer disposed on a optically transparent material in a processing chamber, introducing a processing gas processing gas comprising an oxygen containing gas, a chlorine containing gas, at least one of trifluoromethane (CHF3), sulfur hexafluoride (SF6), hexafluoroethane (C2F6) or ammonia (NH3) and optionally a chlorine-free halogen containing gas and/or an insert gas, into the processing chamber, generating a plasma of the processing gas in the processing chamber, and etching exposed portions of the metal layer disposed on the substrate.
    Type: Application
    Filed: October 5, 2007
    Publication date: July 31, 2008
    Inventors: Madhavi R. Chandrachood, Amitabh Sabharwal, Toi Yue Becky Leung, Michael Grimbergen
  • Patent number: 7078302
    Abstract: In one embodiment, the invention generally provides a method for annealing a doped layer on a substrate including depositing a polycrystalline layer to a gate oxide layer and implanting the polycrystalline layer with a dopant to form a doped polycrystalline layer. The method further includes exposing the doped polycrystalline layer to a rapid thermal anneal to readily distribute the dopant throughout the polycrystalline layer. Subsequently, the method includes exposing the doped polycrystalline layer to a laser anneal to activate the dopant in an upper portion of the polycrystalline layer.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: July 18, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Yi Ma, Khaled Z. Ahmed, Kevin L. Cunningham, Robert C. McIntosh, Abhilash J. Mayur, Haifan Liang, Mark Yam, Toi Yue Becky Leung, Christopher Olsen, Shulin Wang, Majeed Foad, Gary Eugene Miner
  • Patent number: 6902947
    Abstract: Disclosed herein is a method of improving the adhesion of a hydrophobic self-assembled monolayer (SAM) coating to a surface of a MEMS structure, for the purpose of preventing stiction. The method comprises treating surfaces of the MEMS structure with a plasma generated from a source gas comprising oxygen and, optionally, hydrogen. The treatment oxidizes the surfaces, which are then reacted with hydrogen to form bonded OH groups on the surfaces. The hydrogen source may be present as part of the plasma source gas, so that the bonded OH groups are created during treatment of the surfaces with the plasma. Also disclosed herein is an integrated method for release and passivation of MEMS structures which may be adjusted to be carried out in a either a single chamber processing system or a multi-chamber processing system.
    Type: Grant
    Filed: May 9, 2003
    Date of Patent: June 7, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey D. Chinn, Rolf A. Guenther, Michael B. Rattner, James A. Cooper, Toi Yue Becky Leung, Claes H. Bjorkman
  • Patent number: 6830950
    Abstract: Disclosed herein is a method of improving the adhesion of a hydrophobic self-assembled monolayer (SAM) coating to a surface of a MEMS structure, for the purpose of preventing stiction. The method comprises pretreating surfaces of the MEMS structure with a plasma generated from a source gas comprising oxygen and, optionally, hydrogen. The treatment oxidizes the surfaces, which are then reacted with hydrogen to form bonded OH groups on the surfaces. The hydrogen source may be present as part of the plasma source gas, so that the bonded OH groups are created during treatment of the surfaces with the plasma. Also disclosed herein is an integrated method for release and passivation of MEMS structures.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: December 14, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey D. Chinn, Rolf A. Guenther, Michael B. Rattner, James A. Cooper, Toi Yue Becky Leung
  • Publication number: 20040033639
    Abstract: Disclosed herein is a method of improving the adhesion of a hydrophobic self-assembled monolayer (SAM) coating to a surface of a MEMS structure, for the purpose of preventing stiction. The method comprises treating surfaces of the MEMS structure with a plasma generated from a source gas comprising oxygen and, optionally, hydrogen. The treatment oxidizes the surfaces, which are then reacted with hydrogen to form bonded OH groups on the surfaces. The hydrogen source may be present as part of the plasma source gas, so that the bonded OH groups are created during treatment of the surfaces with the plasma. Also disclosed herein is an integrated method for release and passivation of MEMS structures which may be adjusted to be carried out in a either a single chamber processing system or a multi-chamber processing system.
    Type: Application
    Filed: May 9, 2003
    Publication date: February 19, 2004
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Jeffrey D. Chinn, Rolf A. Guenther, Michael B. Rattner, James A. Cooper, Toi Yue Becky Leung, Claes H. Bjorkman
  • Patent number: 6666979
    Abstract: The present invention pertains to a method of fabricating a surface within a MEM which is free moving in response to stimulation. The free moving surface is fabricated in a series of steps which includes a release method, where release is accomplished by a plasmaless etching of a sacrificial layer material. An etch step is followed by a cleaning step in which by-products from the etch step are removed along with other contaminants which may lead to stiction. There are a series of etch and then clean steps so that a number of “cycles” of these steps are performed. Between each etch step and each clean step, the process chamber pressure is typically abruptly lowered, to create turbulence and aid in the removal of particulates which are evacuated from the structure surface and the process chamber by the pumping action during lowering of the chamber pressure. The final etch/clean cycle may be followed by a surface passivation step in which cleaned surfaces are passivated and/or coated.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: December 23, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey D. Chinn, Vidyut Gopal, Sofiane Soukane, Toi Yue Becky Leung
  • Publication number: 20030166342
    Abstract: Disclosed herein is a method of improving the adhesion of a hydrophobic self-assembled monolayer (SAM) coating to a surface of a MEMS structure, for the purpose of preventing stiction. The method comprises pretreating surfaces of the MEMS structure with a plasma generated from a source gas comprising oxygen and, optionally, hydrogen. The treatment oxidizes the surfaces, which are then reacted with hydrogen to form bonded OH groups on the surfaces. The hydrogen source may be present as part of the plasma source gas, so that the bonded OH groups are created during treatment of the surfaces with the plasma. Also disclosed herein is an integrated method for release and passivation of MEMS structures.
    Type: Application
    Filed: November 20, 2002
    Publication date: September 4, 2003
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Jeffrey D. Chinn, Rolf A. Guenther, Michael B. Rattner, James A. Cooper, Toi Yue Becky Leung
  • Patent number: 6576489
    Abstract: The invention includes methods of forming microstructure devices. In an exemplary method, a substrate is provided which includes a first material and a second material. At least one of the first and second materials is exposed to vapor-phase alkylsilane-containing molecules to form a coating over the at least one of the first and second materials.
    Type: Grant
    Filed: May 7, 2001
    Date of Patent: June 10, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Toi Yue Becky Leung, Jeffrey D. Chinn
  • Publication number: 20030080082
    Abstract: The present invention pertains to a method of fabricating a surface within a MEM which is free moving in response to stimulation. The free moving surface is fabricated in a series of steps which includes a release method, where release is accomplished by a plasmaless etching of a sacrificial layer material. An etch step is followed by a cleaning step in which by-products from the etch step are removed along with other contaminants which may lead to stiction. There are a series of etch and then clean steps so that a number of “cycles” of these steps are performed. Between each etch step and each clean step, the process chamber pressure is typically abruptly lowered, to create turbulence and aid in the removal of particulates which are evacuated from the structure surface and the process chamber by the pumping action during lowering of the chamber pressure. The final etch/clean cycle may be followed by a surface passivation step in which cleaned surfaces are passivated and/or coated.
    Type: Application
    Filed: October 29, 2001
    Publication date: May 1, 2003
    Inventors: Jeffrey D. Chinn, Vidyut Gopal, Sofiane Soukane, Toi Yue Becky Leung
  • Publication number: 20020164879
    Abstract: The invention includes methods of forming microstructure devices. In an exemplary method, a substrate is provided which includes a first material and a second material. At least one of the first and second materials is exposed to vapor-phase alkylsilane-containing molecules to form a coating over the at least one of the first and second materials.
    Type: Application
    Filed: May 7, 2001
    Publication date: November 7, 2002
    Applicant: Applied Materials, Inc.
    Inventors: Toi Yue Becky Leung, Jeffrey D. Chinn