Patents by Inventor Tolga Tekin

Tolga Tekin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11073436
    Abstract: A sensor device including a deflectable membrane made of a 2D nanomaterial, a first optical waveguide for guiding light, disposed adjacent to the membrane and extending along the surface of the membrane at least in a first section, as well as a measuring device for measuring, within the first section the influence of the membrane on an evanescent wave range of the light guided along the first optical waveguide. The influence of the membrane on the light guided in the optical waveguide, in particular on the evanescent wave range of the light, can be measured interferometrically by detecting phasing differences or phase shifts. This allows for a force-free readout of the membrane deflection. By using very thin 2D nanomaterials, the membrane can also react to very quick changes in force.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: July 27, 2021
    Assignees: FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V., IHP GmbH Leibniz-Institut für innovative Mikroelektronik
    Inventors: Giannino Dziallas, Lars Zimmermann, Tolga Tekin, Ha Duong Ngo
  • Publication number: 20210018687
    Abstract: Disclosed herein is an optical system, comprising a first optical component, featuring a first waveguide and a recess which passes at least partially through the first optical component from a front side to a back side, a second optical component, arranged in the recess of the first optical component, and a second waveguide optically coupled with the first waveguide, and a carrier substrate. The first optical component including a first marking set with a defined position/orientation relative to the first waveguide, the second optical component including a second marking set with a defined position/orientation relative to the second waveguide, and based on a relative position/orientation of the first and second marking sets, determine whether the first and the second optical components are aligned in a reference plane that is parallel to a surface of the carrier substrate, such that the first and the second waveguide are optically coupled.
    Type: Application
    Filed: July 17, 2020
    Publication date: January 21, 2021
    Inventors: Hans-Hermann Oppermann, Tolga Tekin, Charles-Alix Manier
  • Publication number: 20210018679
    Abstract: Disclosed is a system for and a method of manufacturing of an optical system, including a first optical component, comprising a first waveguide and a carrier substrate, wherein the first optical component is arranged on the carrier substrate. The first optical component comprises a first markup set having a defined position/orientation with respect to the first waveguide, the carrier substrate has a second markup set detectable based on a relative position/orientation of the first and second markup sets when a desired orientation of the first waveguide relative to the carrier substrate is achieved in a reference plane extending parallel to a surface of the carrier substrate.
    Type: Application
    Filed: July 17, 2020
    Publication date: January 21, 2021
    Inventors: Charles-Alix Manier, Hans-Hermann Oppermann, Kai Zoschke, Tolga Tekin
  • Publication number: 20210018686
    Abstract: An assembly may include at least one camera and a controllable mechanical handling device. The system may further include a first component, including a first optical waveguide and a second component, including a second optical waveguide. The first component and the second component are fixedly connected to a substrate and arranged directly next to one another on the substrate and relative to one another in such a way that a coupling side of the first component and a coupling side of the second component are situated opposite each other on a first and second side of a coupling plane. The optical waveguides of the first and second component each end at a first coupling surface or a second coupling surface. The first and second coupling sides are aligned, and optically coupled with one another at a first and second end face.
    Type: Application
    Filed: July 15, 2020
    Publication date: January 21, 2021
    Inventors: Hans-Hermann Oppermann, Tolga Tekin, Jörg Stockmeyer, Juliane Fröhlich
  • Publication number: 20200182716
    Abstract: A sensor device including a deflectable membrane made of a 2D nanomaterial, a first optical waveguide for guiding light, disposed adjacent to the membrane and extending along the surface of the membrane at least in a first section, as well as a measuring device for measuring, within the first section the influence of the membrane on an evanescent wave range of the light guided along the first optical waveguide. The influence of the membrane on the light guided in the optical waveguide, in particular on the evanescent wave range of the light, can be measured interferometrically by detecting phasing differences or phase shifts. This allows for a force-free readout of the membrane deflection. By using very thin 2D nanomaterials, the membrane can also react to very quick changes in force.
    Type: Application
    Filed: December 9, 2019
    Publication date: June 11, 2020
    Applicants: FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V., IHP GmbH Leibniz-Institut für innovative Mikroelektronik
    Inventors: Giannino DZIALLAS, Lars ZIMMERMANN, Tolga TEKIN, Ha Duong NGO
  • Patent number: 10658187
    Abstract: A method for manufacturing a semiconductor component including: providing a flat carrier with an upper side and a lower side, the carrier including a continuous opening that runs between the upper side and the lower side; providing a semiconductor arrangement that includes a semiconductor chip that includes electrically and/or optically active regions on a lower side; arranging the semiconductor arrangement in the opening such that a lower side of the semiconductor arrangement and the lower side of the carrier run in a common plane; casting the semiconductor arrangement with a potting compound, such that the semiconductor arrangement is materially connected to the carrier; and thinning out the semiconductor system by way of grinding from above, such that an upper side of the carrier and an upper side of the semiconductor arrangement run in a common plane.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: May 19, 2020
    Assignee: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Hans-Hermann Oppermann, Kai Zoschke, Charles-Alix Manier, Martin Wilke, Tolga Tekin, Robert Gernhardt
  • Publication number: 20190088490
    Abstract: A method for manufacturing a semiconductor component including: providing a flat carrier with an upper side and a lower side, the carrier including a continuous opening that runs between the upper side and the lower side; providing a semiconductor arrangement that includes a semiconductor chip that includes electrically and/or optically active regions on a lower side; arranging the semiconductor arrangement in the opening such that a lower side of the semiconductor arrangement and the lower side of the carrier run in a common plane; casting the semiconductor arrangement with a potting compound, such that the semiconductor arrangement is materially connected to the carrier; and thinning out the semiconductor system by way of grinding from above, such that an upper side of the carrier and an upper side of the semiconductor arrangement run in a common plane.
    Type: Application
    Filed: March 1, 2017
    Publication date: March 21, 2019
    Inventors: Hans-Hermann Oppermann, Kai Zoschke, Charles-Alix Manier, Martin Wilke, Tolga Tekin, Robert Gernhardt
  • Publication number: 20040062470
    Abstract: Optical device (1) for the differentiation of a first optical signal and an optical signal lagging behind the first, in which the differentiation is represented by a signal carried by a continuous wave passing through the two arms (5, 6) of an interferometer comprising media with an index that depends on the optical power passing through them. The delayed signal is the first signal fed back to one of the arms through a delay (7).
    Type: Application
    Filed: September 25, 2003
    Publication date: April 1, 2004
    Inventors: Alexandre Shen, Jean-Guy Provost, Fabrice Devaux, Bernd Sartorius, Tolga Tekin, Michael Schlak, Christopher Janz
  • Patent number: 6628855
    Abstract: An optical device for the differentiation of a first optical signal and an optical signal lagging behind the first, in which the differentiation is represented by a signal carried by a continuous wave passing through the two arms of an interferometer including media with an index that depends on the optical power passing through them. The delayed signal is the first signal fed back to one of the arms through a delay.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: September 30, 2003
    Assignee: Alcatel
    Inventors: Alexandre Shen, Jean-Guy Provost, Fabrice Devaux, Bernd Sartorius, Tolga Tekin, Michael Schlak, Cristopher Janz
  • Patent number: 6625338
    Abstract: Converter of an NRZ signal with a bit duration T comprising an interferometric structure (10) with two arms (9, 11) equipped with a medium (13, 15) with an index that varies depending on the optical power passing through the said medium. The NRZ signal to be converted is input into each of the arms (9, 11). The output signal (7) from the structure is reinput through a means (16) introducing a delay of T/2 in one of the arms (11). The signal at the output (7) is then the NRZ signal converted to the RZ format.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: September 23, 2003
    Assignee: Alcatel
    Inventors: Alexandre Shen, Fabrice Devaux, Michael Schlak, Tolga Tekin
  • Publication number: 20020018612
    Abstract: Converter of an NRZ signal with a bit duration T comprising an interferometric structure (10) with two arms (9, 11) equipped with a medium (13, 15) with an index that varies depending on the optical power passing through the said medium. The NRZ signal to be converted is input into each of the arms (9, 11). The output signal (7) from the structure is reinput through a means (16) introducing a delay of T/2 in one of the arms (11).
    Type: Application
    Filed: May 10, 2001
    Publication date: February 14, 2002
    Applicant: ALCATEL
    Inventors: Alexandre Shen, Fabrice Devaux, Michael Schlak, Tolga Tekin