Patents by Inventor Tomohiko Kasai
Tomohiko Kasai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9829230Abstract: An air-conditioning apparatus has different two modes including a response detection diagnosis in which a control unit diagnoses a trouble of a component device during the trouble diagnosis operation based on presence or absence of a response from the operational state sensor when the mode has forcibly changed the device operation, and a performance detection diagnosis in which a trouble is detected by a detection value of the operational state sensor at a time when the operational state of the trouble diagnosis operation is stable, and the performance detection diagnosis is executed after the response detection diagnosis is executed.Type: GrantFiled: February 28, 2013Date of Patent: November 28, 2017Assignee: Mitsubishi Electric CorporationInventors: Shogo Tamaki, Kazuyoshi Shinozaki, Tomohiko Kasai
-
Patent number: 9459033Abstract: A correspondence determination operation is performed. The correspondence determination operation differs a direction of distribution or a flow rate of a refrigerant flowing in one or some of use units among a plurality of use units to that of the other use units and determines, on the basis of a refrigerant temperature of the use unit, a location of a non-correspondence between a branch port that is connected to the use unit with refrigerant pipes and a set branch port that is obtained in accordance with the wire connection.Type: GrantFiled: August 2, 2012Date of Patent: October 4, 2016Assignee: Mitsubishi Electric CorporationInventors: Shogo Tamaki, Fumitake Unezaki, Tomohiko Kasai
-
Patent number: 9322561Abstract: An air-conditioning apparatus includes a body casing of an indoor unit formed in a substantially rectangular parallelepiped shape. The body casing is formed with a body inlet port on a body bottom, and a body outlet port is formed in each body side. The body casing houses a centrifugal fan, a fan motor rotatably driving the centrifugal fan, and an indoor heat exchanger disposed so as to surround an outer periphery of the centrifugal fan in planar view. In each of the body outlet port, a joint is protrudingly provided with a body-side duct connecting portion that connects a duct thereto. Further, outlet ports are formed. The air-conditioning apparatus includes a plurality of outlet units each protrudingly provided with an outlet-side duct connecting portion that connects the duct thereto. Furthermore, at least one of the joints is formed with a plurality of the body-side duct connecting portions.Type: GrantFiled: February 17, 2012Date of Patent: April 26, 2016Assignee: MITSUBISHI ELECTRIC CORPORATIONInventors: Takashi Ikeda, Joseph Paul Bush, Takashi Okazaki, Tomohiko Kasai
-
Patent number: 9316421Abstract: An air-conditioning apparatus including a check valve in a passage between a first flow switching device and a suction side of a compressor, an expansion valve midway of a liquid extension piping, and an additional unit having a first bypass and a second bypass that are branched off from a passage between an indoor unit and the liquid expansion valve, and are connected to a passage between the check valve and the suction side of the compressor. The first bypass has, midway thereof, a first bypass expansion valve capable of controlling a throughput of refrigerant and an auxiliary heat exchanger that has a heat source different from the refrigerant, the auxiliary heat exchanger functioning as an evaporator heating the refrigerant flowing in the first bypass. The second bypass has, midway thereof, a second bypass expansion valve capable of controlling a throughput of refrigerant.Type: GrantFiled: August 2, 2012Date of Patent: April 19, 2016Assignee: MITSUBISHI ELECTRIC CORPORATIONInventors: Kosuke Tanaka, Tomohiko Kasai
-
Patent number: 9212825Abstract: A multi-chamber air conditioner including a heat-source side refrigerant circuit in which a compressor, an outdoor heat exchanger, a first heat exchanger, a refrigerant flow-rate controller, and a second heat exchanger are connected in series, a first use-side refrigerant circuit in which the first heat exchanger and an indoor heat exchanger are connected in series, and a second use-side refrigerant circuit in which the second heat exchanger and the indoor heat exchanger are connected in series, and a heat-source side refrigerant circulating in the heat-source side refrigerant circuit and a use-side refrigerant circulating in the use-side refrigerant circuit are heat-exchanged in the first heat exchanger. The heat-source side refrigerant circulating in the heat-source side refrigerant circuit and the use-side refrigerant circulating in the use-side refrigerant circuit are heat-exchanged in the second heat exchanger.Type: GrantFiled: November 17, 2008Date of Patent: December 15, 2015Assignee: Mitsubishi Electric CorporationInventors: Shinichi Wakamoto, Koji Yamashita, Takashi Okazaki, Naoki Tanaka, Keisuke Hokazono, Hiroyuki Morimoto, Yuji Motomura, Takeshi Hatomura, Tomohiko Kasai
-
Patent number: 9188376Abstract: Operation data of a refrigerant circuit is acquired after an initial refrigerant charge amount of refrigerant is charged in the refrigerant circuit and operation of the refrigerant circuit is started, an internal volume of a high-pressure pipe 6 is computed from the obtained operation data and the initial refrigerant charge amount input in a input unit 112, a target refrigerant charge amount is computed from the computed internal volume of the high-pressure pipe 6 and a standard operating state acquired in advance, the standard operating state being operation data of the refrigerant circuit when the refrigerant circuit is in a standard operating state that satisfies a preset condition, and an additional refrigerant charge amount is computed from the target refrigerant charge amount and the initial refrigerant charge amount.Type: GrantFiled: December 20, 2012Date of Patent: November 17, 2015Assignee: Mitsubishi Electric CorporationInventors: Shogo Tamaki, Fumitake Unezaki, Kazuyoshi Shinozaki, Tomohiko Kasai
-
Patent number: 8820106Abstract: A heat source-side refrigerant circuit A including a compressor 11, an outdoor heat exchanger 13, a first refrigerant branch portion 21 connected to the compressor 11, a second refrigerant branch portion 22 and a third refrigerant branch portion 23 connected to the outdoor heat exchanger 13, a first refrigerant flow rate control device 24 provided between branch piping 40 and the second refrigerant branch portion 22, intermediate heat exchangers 25n connected at one side thereof to the first refrigerant branch portion 21 and the third refrigerant branch portion 23 via three-way valves 26n and connected at the other side thereof to the second refrigerant branch portion 22, and second refrigerant flow rate control devices 27n provided between the respective intermediate heat exchangers 25n and the second refrigerant branch portion 22, and user-side refrigerant circuits Bn having indoor heat exchangers 31n connected respectively to the intermediate heat exchangers 25n are provided, and at least one of water andType: GrantFiled: October 29, 2008Date of Patent: September 2, 2014Assignee: Mitsubishi Electric CorporationInventors: Shinichi Wakamoto, Koji Yamashita, Takashi Okazaki, Naoki Tanaka, Keisuke Hokazono, Hiroyuki Morimoto, Yuji Motomura, Takeshi Hatomura, Tomohiko Kasai, Naofumi Takenaka, Yusuke Shimazu
-
Publication number: 20140238060Abstract: An air-conditioning apparatus has different two modes including a response detection diagnosis in which a control unit diagnoses a trouble of a component device during the trouble diagnosis operation based on presence or absence of a response from the operational state sensor when the mode has forcibly changed the device operation, and a performance detection diagnosis in which a trouble is detected by a detection value of the operational state sensor at a time when the operational state of the trouble diagnosis operation is stable, and the performance detection diagnosis is executed after the response detection diagnosis is executed.Type: ApplicationFiled: February 28, 2013Publication date: August 28, 2014Applicant: Mitsubishi Electric CorporationInventors: Shogo TAMAKI, Kazuyoshi SHINOZAKI, Tomohiko KASAI
-
Publication number: 20140174114Abstract: Operation data of a refrigerant circuit is acquired after an initial refrigerant charge amount of refrigerant is charged in the refrigerant circuit and operation of the refrigerant circuit is started, an internal volume of a high-pressure pipe 6 is computed from the obtained operation data and the initial refrigerant charge amount input in a input unit 112, a target refrigerant charge amount is computed from the computed internal volume of the high-pressure pipe 6 and a standard operating state acquired in advance, the standard operating state being operation data of the refrigerant circuit when the refrigerant circuit is in a standard operating state that satisfies a preset condition, and an additional refrigerant charge amount is computed from the target refrigerant charge amount and the initial refrigerant charge amount.Type: ApplicationFiled: December 20, 2012Publication date: June 26, 2014Applicant: MITSUBISHI ELECTRIC CORPORATIONInventors: Shogo TAMAKI, Fumitake UNEZAKI, Kazuyoshi SHINOZAKI, Tomohiko KASAI
-
Publication number: 20140033750Abstract: An air-conditioning apparatus including a check valve in a passage between a first flow switching device and a suction side of a compressor, an expansion valve midway of a liquid extension piping, and an additional unit having a first bypass and a second bypass that are branched off from a passage between an indoor unit and the liquid expansion valve, and are connected to a passage between the check valve and the suction side of the compressor. The first bypass has, midway thereof, a first bypass expansion valve capable of controlling a throughput of refrigerant and an auxiliary heat exchanger that has a heat source different from the refrigerant, the auxiliary heat exchanger functioning as an evaporator heating the refrigerant flowing in the first bypass. The second bypass has, midway thereof, a second bypass expansion valve capable of controlling a throughput of refrigerant.Type: ApplicationFiled: August 2, 2012Publication date: February 6, 2014Applicant: Mitsubishi Electric CorporationInventors: Kosuke TANAKA, Tomohiko KASAI
-
Publication number: 20140033749Abstract: A correspondence determination operation is performed. The correspondence determination operation differs a direction of distribution or a flow rate of a refrigerant flowing in one or some of use units among a plurality of use units to that of the other use units and determines, on the basis of a refrigerant temperature of the use unit, a location of a non-correspondence between a branch port that is connected to the use unit with refrigerant pipes and a set branch port that is obtained in accordance with the wire connection.Type: ApplicationFiled: August 2, 2012Publication date: February 6, 2014Applicant: MITSUBISHI ELECTRIC CORPORATIONInventors: Shogo TAMAKI, Fumitake Unezaki, Tomohiko Kasai
-
Publication number: 20130213614Abstract: An air-conditioning apparatus includes a body casing of an indoor unit formed in a substantially rectangular parallelepiped shape. The body casing is formed with a body inlet port on a body bottom, and a body outlet port is formed in each body side. The body casing houses a centrifugal fan, a fan motor rotatably driving the centrifugal fan, and an indoor heat exchanger disposed so as to surround an outer periphery of the centrifugal fan in planar view. In each of the body outlet port, a joint is protrudingly provided with a body-side duct connecting portion that connects a duct thereto. Further, outlet ports are formed. The air-conditioning apparatus includes a plurality of outlet units each protrudingly provided with an outlet-side duct connecting portion that connects the duct thereto. Furthermore, at least one of the joints is formed with a plurality of the body-side duct connecting portions.Type: ApplicationFiled: February 17, 2012Publication date: August 22, 2013Applicants: MITSUBISHI ELECTRIC & ELECTRONICS USA, INC., MITSUBISHI ELECTRIC CORPORATIONInventors: Takashi Ikeda, Joseph Paul Bush, Takashi Okazaki, Tomohiko Kasai
-
Patent number: 8015836Abstract: A heat pump system has a single heat source unit connected to at least one load unit to heat water to a high temperature. A hot water supply system 100 (heat pump system) includes a heat source unit 10 provided with a first compressor 11, a four-way selector valve 12 and a heat source heat exchanger 13, and a load unit 50 provided with a first flow controller 51, a first load heat exchanger 52, a second compressor 53, a second load heat exchanger 54, and a second flow controller 55. A main circuit A is formed by connecting the first compressor 11, the four-way selector valve 12, the heat source heat exchanger 13, the first flow controller 51 and the first load heat exchanger 52 with a liquid pipe 1 and a gas pipe 2 sequentially. A load refrigerant circuit B is formed by connecting the second compressor 53, the second load heat exchanger 54, the second flow controller 55, and the first load heat exchanger 52 with a load refrigerant pipe line 56 sequentially.Type: GrantFiled: March 27, 2007Date of Patent: September 13, 2011Assignee: Mitsubishi Electric CorporationInventors: Junichi Kameyama, Tomohiko Kasai
-
Patent number: 7984620Abstract: An air conditioning apparatus has plural indoor units having: plural heat exchangers; and flow controllers respectively corresponding to the heat exchangers. In each of the indoor units, one heat exchanger is used as a condenser, and another heat exchanger is used as an evaporator, thereby causing the indoor unit to perform a temperature and humidity controlling operation. An indoor unit(s) which is not set to perform the temperature and humidity controlling operation may be caused to perform a heating operation or a cooling operation. Capacity controls on the condensers and the evaporators are performed by corresponding flow controllers. Gas refrigerants ejected from plural heat exchangers serving as evaporators are joined together, and then distributed to plural heat exchangers serving as condensers.Type: GrantFiled: April 23, 2008Date of Patent: July 26, 2011Assignee: Mitsubishi Denki Kabushiki KaishaInventors: Daisuke Shimamoto, Munehiro Yamanaka, Hidekazu Tani, Tomohiko Kasai, Masahiro Tsuda, Shuji Oura, Makoto Saitou
-
Publication number: 20110113802Abstract: A multi-chamber air conditioner including a heat-source side refrigerant circuit in which a compressor, an outdoor heat exchanger, a first heat exchanger, a refrigerant flow-rate controller, and a second heat exchanger are connected in series, a first use-side refrigerant circuit in which the first heat exchanger and an indoor heat exchanger are connected in series, and a second use-side refrigerant circuit in which the second heat exchanger and the indoor heat exchanger are connected in series, and a heat-source side refrigerant circulating in the heat-source side refrigerant circuit and a use-side refrigerant circulating in the use-side refrigerant circuit are heat-exchanged in the first heat exchanger. The heat-source side refrigerant circulating in the heat-source side refrigerant circuit and the use-side refrigerant circulating in the use-side refrigerant circuit are heat-exchanged in the second heat exchanger.Type: ApplicationFiled: November 17, 2008Publication date: May 19, 2011Applicant: Mitsubishi Electric CorporationInventors: Shinichi Wakamoto, Koji Yamashita, Takashi Okazaki, Naoki Tanaka, Keisuke Hokazono, Hiroyuki Morimoto, Yuji Motomura, Takeshi Hatomura, Tomohiko Kasai
-
Publication number: 20110088421Abstract: A heat source-side refrigerant circuit A including a compressor 11, an outdoor heat exchanger 13, a first refrigerant branch portion 21 connected to the compressor 11, a second refrigerant branch portion 22 and a third refrigerant branch portion 23 connected to the outdoor heat exchanger 13, a first refrigerant flow rate control device 24 provided between branch piping 40 and the second refrigerant branch portion 22, intermediate heat exchangers 25n connected at one side thereof to the first refrigerant branch portion 21 and the third refrigerant branch portion 23 via three-way valves 26n and connected at the other side thereof to the second refrigerant branch portion 22, and second refrigerant flow rate control devices 27n provided between the respective intermediate heat exchangers 25n and the second refrigerant branch portion 22, and user-side refrigerant circuits Bn having indoor heat exchangers 31n connected respectively to the intermediate heat exchangers 25n are provided, and at least one of water andType: ApplicationFiled: October 29, 2008Publication date: April 21, 2011Applicant: Mitsubishi Electric CorporationInventors: Shinichi Wakamoto, Koji Yamashita, Takashi Okazaki, Naoki Tanaka, Keisuke Hokazono, Hiroyuki Morimoto, Yuji Motomura, Takeshi Hatomura, Tomohiko Kasai, Naofumi Takenaka, Yusuke Shimazu
-
Publication number: 20100050675Abstract: A heat pump system has a single heat source unit connected to at least one load unit to heat water to a high temperature. A hot water supply system 100 (heat pump system) includes a heat source unit 10 provided with a first compressor 11, a four-way selector valve 12 and a heat source heat exchanger 13, and a load unit 50 provided with a first flow controller 51, a first load heat exchanger 52, a second compressor 53, a second load heat exchanger 54, and a second flow controller 55. A main circuit A is formed by connecting the first compressor 11, the four-way selector valve 12, the heat source heat exchanger 13, the first flow controller 51 and the first load heat exchanger 52 with a liquid pipe 1 and a gas pipe 2 sequentially. A load refrigerant circuit B is formed by connecting the second compressor 53, the second load heat exchanger 54, the second flow controller 55, and the first load heat exchanger 52 with a load refrigerant pipe line 56 sequentially.Type: ApplicationFiled: March 27, 2007Publication date: March 4, 2010Applicant: Mitsubishi Electric CorporationInventors: Junichi Kameyama, Tomohiko Kasai
-
Publication number: 20090145151Abstract: An air conditioner including an outdoor unit, indoor units, and a relay device for connection between the outdoor unit and each of the indoor units. The outdoor unit includes an outdoor heat exchanger, a compressor for pressurizing a refrigerant of or including carbon dioxide, and a first switching member for switching flow direction of the refrigerant through the outdoor heat exchanger. Each of the indoor units includes an indoor heat exchanger and first flow controller in fluid communication between first and second pipe connection ports. The relay device includes second switching members, each of the second switching members selectively connecting the first pipe connection port of a respective indoor unit with the first or second connection end of the outdoor unit.Type: ApplicationFiled: November 1, 2005Publication date: June 11, 2009Applicant: MITSUBISHI DENKI KABUSHIKI KAISHAInventors: Shinichi Wakamoto, Tomohiko Kasai, Jiro Okajima, Toshiyuki Nakamura, Kunio Tojo, Takashi Okazaki, Toshihiko Enomoto
-
Patent number: 7493775Abstract: An air conditioning apparatus has plural indoor units having: plural heat exchangers; and flow controllers respectively corresponding to the heat exchangers. In each of the indoor units, one heat exchanger is used as a condenser, and another heat exchanger is used as an evaporator, thereby causing the indoor unit to perform a temperature and humidity controlling operation. An indoor unit(s) which is not set to perform the temperature and humidity controlling operation may be caused to perform a heating operation or a cooling operation. Capacity controls on the condensers and the evaporators are performed by corresponding flow controllers. Gas refrigerants ejected from plural heat exchangers serving as evaporators are joined together, and then distributed to plural heat exchangers serving as condensers.Type: GrantFiled: October 30, 2002Date of Patent: February 24, 2009Assignee: Mitsubishi Denki Kabushiki KaishaInventors: Daisuke Shimamoto, Munehiro Yamanaka, Hidekazu Tani, Tomohiko Kasai, Masahiro Tsuda, Shuji Oura, Makoto Saitou
-
Publication number: 20080196432Abstract: An air conditioning apparatus has plural indoor units having: plural heat exchangers; and flow controllers respectively corresponding to the heat exchangers. In each of the indoor units, one heat exchanger is used as a condenser, and another heat exchanger is used as an evaporator, thereby causing the indoor unit to perform a temperature and humidity controlling operation. An indoor unit(s) which is not set to perform the temperature and humidity controlling operation may be caused to perform a heating operation or a cooling operation. Capacity controls on the condensers and the evaporators are performed by corresponding flow controllers. Gas refrigerants ejected from plural heat exchangers serving as evaporators are joined together, and then distributed to plural heat exchangers serving as condensers.Type: ApplicationFiled: April 23, 2008Publication date: August 21, 2008Applicant: MITSUBISHI DENKI KABUSHIKI KAISHAInventors: Daisuke SHIMAMOTO, Munehiro Yamanaka, Hidekazu Tani, Tomohiko Kasai, Masahiro Tsuda, Shuji Oura, Makoto Saitou