Patents by Inventor Tomohiko Kitajima
Tomohiko Kitajima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20210233779Abstract: Memory devices and methods of manufacturing memory devices are provided. The device and methods described suppress oxidation of metal layers exposed to ambient oxygen. After an opening is formed, a nitridation process occurs to nitridate the surface of the exposed metal layer inside the opening. The nitridated region formed on the surface of metal layer inside the opening works as a barrier layer for oxygen diffusion. In addition, the nitridated region works as an electrode for charge trap memory cells.Type: ApplicationFiled: January 13, 2021Publication date: July 29, 2021Applicant: Applied Materials, Inc.Inventors: Chang Seok Kang, Tomohiko Kitajima, Sung-Kwan Kang
-
Publication number: 20210217773Abstract: Embodiments of the present disclosure provide an apparatus and methods for forming stair-like structures with accurate profiles and dimension control for manufacturing three dimensional (3D) stacked memory cell semiconductor devices. In one embodiment, a memory cell device includes a film stack comprising alternating pairs of dielectric layers and conductive structures horizontally formed on a substrate, and an opening formed in the film stack, wherein the opening is filled with a metal dielectric layer, a multi-layer structure and a center filling layer, wherein the metal dielectric layer in the opening is interfaced with the conductive structure.Type: ApplicationFiled: March 26, 2021Publication date: July 15, 2021Inventors: Changseok KANG, Tomohiko KITAJIMA
-
Patent number: 10998329Abstract: Methods and apparatus for forming a plurality of nonvolatile memory cells are provided herein. In some embodiments, the method, for example, includes forming a plurality of nonvolatile memory cells, comprising forming, on a substrate, a stack of alternating layers of metal including a first layer of metal and a second layer of metal different from the first layer of metal; removing the first layer of metal to form spaces between the alternating layers of the second layer of metal; and one of depositing a first layer of material to partially fill the spaces to leave air gaps therein or depositing a second layer of material to fill the spaces.Type: GrantFiled: July 22, 2019Date of Patent: May 4, 2021Assignee: APPLIED MATERIALS, INC.Inventors: Takehito Koshizawa, Mukund Srinivasan, Tomohiko Kitajima, Chang Seok Kang, Sung-Kwan Kang, Gill Y. Lee, Susmit Singha Roy
-
Publication number: 20210118691Abstract: Methods of etching film stacks to form gaps of uniform width are described. A film stack is etched through a hardmask. A conformal liner is deposited in the gap. The bottom of the liner is removed. The film stack is selectively etched relative to the liner. The liner is removed. The method may be repeated to a predetermined depth.Type: ApplicationFiled: December 30, 2020Publication date: April 22, 2021Applicant: Applied Materials, Inc.Inventors: Shishi Jiang, Pramit Manna, Bo Qi, Abhijit Basu Mallick, Rui Cheng, Tomohiko Kitajima, Harry S. Whitesell, Huiyuan Wang
-
Patent number: 10964717Abstract: Methods and apparatus for forming a plurality of nonvolatile memory cells are provided herein. In some embodiments, the method, for example, includes forming, on a substrate, a stack of alternating layers including a first layer of material and a second layer of material different from the first layer of material; forming a memory hole in the stack of alternating layers of the first layer of material and the second layer of material; depositing a layer of blocking oxide on sides defining the memory hole; depositing a layer of silicon atop the layer of blocking oxide to form a silicon channel; deposit core oxide to fill the silicon channel; removing the first layer of material to form spaces between the alternating layers of the second material; and one of depositing a third layer of material to partially fill the spaces to leave air gaps therein or depositing a fourth layer of material to fill the spaces.Type: GrantFiled: August 1, 2019Date of Patent: March 30, 2021Assignee: APPLIED MATERIALS, INC.Inventors: Sung-Kwan Kang, Gill Lee, Chang Seok Kang, Tomohiko Kitajima
-
Patent number: 10886140Abstract: Methods of etching film stacks to from gaps of uniform width are described. A film stack is etched through a hardmask. A conformal liner is deposited in the gap. The bottom of the liner is removed. The film stack is selectively etched relative to the liner. The liner is removed. The method may be repeated to a predetermined depth.Type: GrantFiled: July 26, 2019Date of Patent: January 5, 2021Assignee: Applied Materials, Inc.Inventors: Shishi Jiang, Pramit Manna, Bo Qi, Abhijit Basu Mallick, Rui Cheng, Tomohiko Kitajima, Harry S. Whitesell, Huiyuan Wang
-
Publication number: 20200373310Abstract: Methods and apparatus for forming a plurality of nonvolatile memory cells are provided herein. In some embodiments, the method, for example, includes forming a plurality of nonvolatile memory cells, comprising forming, on a substrate, a stack of alternating layers of metal including a first layer of metal and a second layer of metal different from the first layer of metal; removing the first layer of metal to form spaces between the alternating layers of the second layer of metal; and one of depositing a first layer of material to partially fill the spaces to leave air gaps therein or depositing a second layer of material to fill the spaces.Type: ApplicationFiled: July 22, 2019Publication date: November 26, 2020Inventors: Takehito Koshizawa, Mukund Srinivasan, Tomohiko Kitajima, Chang Seok Kang, Sung-Kwan Kang, Gill Y. Lee, Susmit Singha Roy
-
Publication number: 20200312874Abstract: Methods of manufacturing memory devices are provided. The methods decrease the thickness of the first layers and increase the thickness of the second layers. Semiconductor devices are described having a film stack comprising alternating nitride and second layers in a first portion of the device, the alternating nitride and second layers of the film stack having a nitride:oxide thickness ratio (Nf:Of); and a memory stack comprising alternating word line and second layers in a second portion of the device, the alternating word line and second layers of the memory stack having a word line:oxide thickness ratio (Wm:Om), wherein 0.1(Wm:Om)<Nf:Of<0.95(Wm:Om).Type: ApplicationFiled: March 30, 2020Publication date: October 1, 2020Applicant: Applied Materials, Inc.Inventors: Chang Seok Kang, Tomohiko Kitajima, Mukund Srinivasan, Sanjay Natarajan
-
Publication number: 20200251151Abstract: Memory devices are described. The memory devices include a plurality of bit lines extending through a stack of alternating memory layers and dielectric layers. Each of the memory layers comprises a single crystalline-like silicon layer and includes a first word line, a second word line, a first capacitor, and a second capacitor. Methods of forming stacked memory devices are also described.Type: ApplicationFiled: February 3, 2020Publication date: August 6, 2020Applicant: Applied Materials, Inc.Inventors: Chang Seok Kang, Tomohiko Kitajima, Gill Yong Lee, Sanjay Natarajan, Sung-Kwan Kang, Lequn Liu
-
Publication number: 20200235122Abstract: Methods and apparatus for forming a plurality of nonvolatile memory cells are provided herein. In some embodiments, the method, for example, includes forming, on a substrate, a stack of alternating layers including a first layer of material and a second layer of material different from the first layer of material; forming a memory hole in the stack of alternating layers of the first layer of material and the second layer of material; depositing a layer of blocking oxide on sides defining the memory hole; depositing a layer of silicon atop the layer of blocking oxide to form a silicon channel; deposit core oxide to fill the silicon channel; removing the first layer of material to form spaces between the alternating layers of the second material; and one of depositing a third layer of material to partially fill the spaces to leave air gaps therein or depositing a fourth layer of material to fill the spaces.Type: ApplicationFiled: August 1, 2019Publication date: July 23, 2020Inventors: SUNG-KWAN KANG, GILL LEE, CHANG SEOK KANG, TOMOHIKO KITAJIMA
-
Publication number: 20200203373Abstract: Embodiments of the present disclosure provide an apparatus and methods for forming stair-like structures with accurate profiles and dimension control for manufacturing three dimensional (3D) stacked memory cell semiconductor devices. In one embodiment, a memory cell device includes a film stack comprising alternating pairs of dielectric layers and conductive structures horizontally formed on a substrate, and an opening formed in the film stack, wherein the opening is filled with a metal dielectric layer, a multi-layer structure and a center filling layer, wherein the metal dielectric layer in the opening is interfaced with the conductive structure.Type: ApplicationFiled: October 18, 2019Publication date: June 25, 2020Inventors: ChangSeok KANG, Tomohiko KITAJIMA
-
Patent number: 10651098Abstract: A method of controlling polishing includes storing a base measurement, the base measurement being a measurement of a substrate after deposition of at least one layer overlying a semiconductor wafer and before deposition of an outer layer over the at least one layer, after deposition of the outer layer over the at least one layer and during polishing of the outer layer on substrate, receiving a sequence of raw measurements of the substrate from an in-situ monitoring system, normalizing each raw measurement in the sequence of raw measurement to generate a sequence of normalized measurements using the raw measurement and the base measurement, and determining at least one of a polishing endpoint or an adjustment for a polishing rate based on at least the sequence of normalized measurements.Type: GrantFiled: June 3, 2016Date of Patent: May 12, 2020Assignee: Applied Materials, Inc.Inventors: Tomohiko Kitajima, Jeffrey Drue David, Jun Qian, Taketo Sekine, Garlen C. Leung, Sidney P. Huey
-
Publication number: 20200035505Abstract: Methods of etching film stacks to from gaps of uniform width are described. A film stack is etched through a hardmask. A conformal liner is deposited in the gap. The bottom of the liner is removed. The film stack is selectively etched relative to the liner. The liner is removed. The method may be repeated to a predetermined depth.Type: ApplicationFiled: July 26, 2019Publication date: January 30, 2020Inventors: Shishi Jiang, Pramit Manna, Bo Qi, Abhijit Basu Mallick, Rui Cheng, Tomohiko Kitajima, Harry S. Whitesell, Huiyuan Wang
-
Patent number: 10229842Abstract: A buff module and method for using the same are provided. In one embodiment, a buff module includes housing having an interior volume, a plurality of drive rollers and a pair of buff heads. The drive rollers are arranged to rotate a substrate within the interior volume on a substantially horizontal axis. The buff heads are disposed in the housing, each buff head rotatable on an axis substantially aligned with the horizontal axis and movable to a position substantially parallel with the horizontal axis.Type: GrantFiled: July 26, 2013Date of Patent: March 12, 2019Assignee: Applied Materials, Inc.Inventors: Clinton Sakata, Hui Chen, Jim K. Atkinson, Tomohiko Kitajima, Brian J. Brown
-
Patent number: 9811077Abstract: A method of controlling polishing includes storing a base spectrum, the base spectrum being a spectrum of light reflected from a substrate after deposition of a deposited dielectric layers overlying a metallic layer or semiconductor wafer and before deposition of a non-metallic layer over the plurality of deposited dielectric layer. After deposition of the non-metallic layer and during polishing of the non-metallic layer on the substrate, measurements of a sequence of raw spectra of light reflected the substrate during polishing are received from an in-situ optical monitoring system. Each raw spectrum is normalized to generate a sequence of normalized spectra using the raw spectrum and the base spectrum. At least one of a polishing endpoint or an adjustment for a polishing rate is determined based on at least one normalized predetermined spectrum from the sequence of normalized spectra.Type: GrantFiled: July 16, 2014Date of Patent: November 7, 2017Assignee: Applied Materials, Inc.Inventors: Tomohiko Kitajima, Jeffrey Drue David, Jun Qian, Taketo Sekine, Garlen C. Leung, Sidney P. Huey
-
Publication number: 20160284615Abstract: A method of controlling polishing includes storing a base measurement, the base measurement being a measurement of a substrate after deposition of at least one layer overlying a semiconductor wafer and before deposition of an outer layer over the at least one layer, after deposition of the outer layer over the at least one layer and during polishing of the outer layer on substrate, receiving a sequence of raw measurements of the substrate from an in-situ monitoring system, normalizing each raw measurement in the sequence of raw measurement to generate a sequence of normalized measurements using the raw measurement and the base measurement, and determining at least one of a polishing endpoint or an adjustment for a polishing rate based on at least the sequence of normalized measurements.Type: ApplicationFiled: June 3, 2016Publication date: September 29, 2016Applicant: Applied Materials, Inc.Inventors: Tomohiko Kitajima, Jeffrey Drue David, Jun Qian, Taketo Sekine, Garlen C. Leung, Sidney P. Huey
-
Patent number: 9362186Abstract: A method of controlling polishing includes storing a base measurement, the base measurement being an eddy current measurement of a substrate after deposition of at least one layer overlying a semiconductor wafer and before deposition of a conductive layer over the at least one layer, after deposition of the conductive layer over the at least one layer and during polishing of the conductive layer on substrate, receiving a sequence of raw measurements of the substrate from an in-situ eddy current monitoring system, normalizing each raw measurement in the sequence of raw measurement to generate a sequence of normalized measurements using the raw measurement and the base measurement, and determining at least one of a polishing endpoint or an adjustment for a polishing rate based on at least the sequence of normalized measurements.Type: GrantFiled: July 15, 2015Date of Patent: June 7, 2016Assignee: Applied Materials, Inc.Inventors: Tomohiko Kitajima, Jeffrey Drue David, Jun Qian, Taketo Sekine, Garlen C. Leung, Sidney P. Huey
-
Publication number: 20160020157Abstract: A method of controlling polishing includes storing a base measurement, the base measurement being an eddy current measurement of a substrate after deposition of at least one layer overlying a semiconductor wafer and before deposition of a conductive layer over the at least one layer, after deposition of the conductive layer over the at least one layer and during polishing of the conductive layer on substrate, receiving a sequence of raw measurements of the substrate from an in-situ eddy current monitoring system, normalizing each raw measurement in the sequence of raw measurement to generate a sequence of normalized measurements using the raw measurement and the base measurement, and determining at least one of a polishing endpoint or an adjustment for a polishing rate based on at least the sequence of normalized measurements.Type: ApplicationFiled: July 15, 2015Publication date: January 21, 2016Inventors: Tomohiko Kitajima, Jeffrey Drue David, Jun Qian, Taketo Sekine, Garlen C. Leung, Sidney P. Huey
-
Publication number: 20160018815Abstract: A method of controlling polishing includes storing a base spectrum, the base spectrum being a spectrum of light reflected from a substrate after deposition of a deposited dielectric layers overlying a metallic layer or semiconductor wafer and before deposition of a non-metallic layer over the plurality of deposited dielectric layer. After deposition of the non-metallic layer and during polishing of the non-metallic layer on the substrate, measurements of a sequence of raw spectra of light reflected the substrate during polishing are received from an in-situ optical monitoring system. Each raw spectrum is normalized to generate a sequence of normalized spectra using the raw spectrum and the base spectrum. At least one of a polishing endpoint or an adjustment for a polishing rate is determined based on at least one normalized predetermined spectrum from the sequence of normalized spectra.Type: ApplicationFiled: July 16, 2014Publication date: January 21, 2016Inventors: Tomohiko Kitajima, Jeffrey Drue David, Jun Qian, Taketo Sekine, Garlen C. Leung, Sidney P. Huey
-
Patent number: 9005999Abstract: Methods for chemical mechanical polishing (CMP) of semiconductor substrates, and more particularly to temperature control during such chemical mechanical polishing are provided. In one aspect, the method comprises polishing the substrate with a polishing surface during a polishing process to remove a portion of the conductive material, repeatedly monitoring a temperature of the polishing surface during the polishing process, and exposing the polishing surface to a rate quench process in response to the monitored temperature so as to achieve a target value for the monitored temperature during the polishing process.Type: GrantFiled: June 30, 2012Date of Patent: April 14, 2015Assignee: Applied Materials, Inc.Inventors: Kun Xu, Jimin Zhang, David H. Mai, Stephen Jew, Shih-Haur Walters Shen, Zhihong Wang, Thomas H. Osterheld, Wen-Chiang Tu, Gary Ka Ho Lam, Tomohiko Kitajima