Patents by Inventor Tomohisa Ohtaki

Tomohisa Ohtaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11977099
    Abstract: A method for manufacturing a semiconductor device in which probes and the layout of the electrode pads of a test element group (TEG) are associated is provided. As a semiconductor device is miniaturized, a scribe area on a wafer also tends to decrease. Accordingly, it is necessary to reduce the size of a TEG arranged in the scribe area, and efficiently arrange an electrode pad for probe contact. Thus, it is necessary to associate the probes and the layout of the electrode pad. According to the method, a layout of a TEG electrode pad corresponding to a plurality of probes arranged in a fan shape or probes manufactured by Micro Electro Mechanical Systems (MEMS) technology is provided.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: May 7, 2024
    Assignee: Hitachi High-Tech Corporation
    Inventors: Tomohisa Ohtaki, Takayuki Mizuno, Ryo Hirano, Toru Fujimura, Shigehiko Kato, Yasuhiko Nara, Katsuo Ohki, Akira Kageyama, Masaaki Komori
  • Patent number: 11709199
    Abstract: As a semiconductor device is miniaturized, a scribe area on a wafer also tends to decrease. Accordingly, it is necessary to reduce the size of a TEG arranged in the scribe area, and efficiently arrange an electrode pad for probe contact. Therefore, it is necessary to associate probes and the efficient layout of the electrode pad. The purpose of the present invention is to provide a technique for associating probes and the layout of the electrode pads of a TEG so as to facilitate the evaluation of electrical characteristics. According to an evaluation apparatus for a semiconductor device of the present invention, the above described problems can be solved by providing a plurality of probes arranged in a fan shape or probes manufactured by Micro Electro Mechanical Systems (MEMS) technology.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: July 25, 2023
    Assignee: Hitachi High-Tech Corporation
    Inventors: Tomohisa Ohtaki, Takayuki Mizuno, Ryo Hirano, Toru Fujimura, Shigehiko Kato, Yasuhiko Nara, Katsuo Ohki, Akira Kageyama, Masaaki Komori
  • Patent number: 11391756
    Abstract: As a semiconductor device is miniaturized, a scribe area on a wafer also tends to decrease. Accordingly, it is necessary to reduce the size of a TEG arranged in the scribe area, and efficiently arrange an electrode pad for probe contact. Therefore, it is necessary to associate probes and the efficient layout of the electrode pad. The purpose of the present invention is to provide a technique for associating probes and the layout of an electrode pad of a TEG to facilitate the evaluation of electrical characteristics. According to the present invention, the above described problem can be solved by arranging a plurality of probes in a fan shape or manufacturing the probes with micro electro mechanical systems (MEMS) technology.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: July 19, 2022
    Assignee: Hitachi High-Tech Corporation
    Inventors: Ryo Hirano, Takayuki Mizuno, Tomohisa Ohtaki, Toru Fujimura, Shigehiko Kato, Yasuhiko Nara, Katsuo Ohki, Akira Kageyama, Masaaki Komori
  • Publication number: 20210048450
    Abstract: As a semiconductor device is miniaturized, a scribe area on a wafer also tends to decrease. Accordingly, it is necessary to reduce the size of a TEG arranged in the scribe area, and efficiently arrange an electrode pad for probe contact. Therefore, it is necessary to associate probes and the efficient layout of the electrode pad. The purpose of the present invention is to provide a technique for associating probes and the layout of the electrode pads of a TEG so as to facilitate the evaluation of electrical characteristics. According to a method for manufacturing a semiconductor device of the present invention, the above-described problems can be solved by providing a layout of a TEG electrode pad corresponding to a plurality of probes arranged in a fan shape or probes manufactured by Micro Electro Mechanical Systems (MEMS) technology.
    Type: Application
    Filed: February 6, 2018
    Publication date: February 18, 2021
    Inventors: Tomohisa OHTAKI, Takayuki MIZUNO, Ryo HIRANO, Toru FUJIMURA, Shigehiko KATO, Yasuhiko NARA, Katsuo OHKI, Akira KAGEYAMA, Masaaki KOMORI
  • Publication number: 20210033642
    Abstract: As a semiconductor device is miniaturized, a scribe area on a wafer also tends to decrease. Accordingly, it is necessary to reduce the size of a TEG arranged in the scribe area, and efficiently arrange an electrode pad for probe contact. Therefore, it is necessary to associate probes and the efficient layout of the electrode pad. The purpose of the present invention is to provide a technique for associating probes and the layout of an electrode pad of a TEG to facilitate the evaluation of electrical characteristics. According to the present invention, the above described problem can be solved by arranging a plurality of probes in a fan shape or manufacturing the probes with micro electro mechanical systems (MEMS) technology.
    Type: Application
    Filed: February 6, 2018
    Publication date: February 4, 2021
    Inventors: Ryo HIRANO, Takayuki MIZUNO, Tomohisa OHTAKI, Toru FUJIMURA, Shigehiko KATO, Yasuhiko NARA, Katsuo OHKI, Akira KAGEYAMA, Masaaki KOMORI
  • Publication number: 20210025936
    Abstract: As a semiconductor device is miniaturized, a scribe area on a wafer also tends to decrease. Accordingly, it is necessary to reduce the size of a TEG arranged in the scribe area, and efficiently arrange an electrode pad for probe contact. Therefore, it is necessary to associate probes and the efficient layout of the electrode pad. The purpose of the present invention is to provide a technique for associating probes and the layout of the electrode pads of a TEG so as to facilitate the evaluation of electrical characteristics. According to an evaluation apparatus for a semiconductor device of the present invention, the above described problems can be solved by providing a plurality of probes arranged in a fan shape or probes manufactured by Micro Electro Mechanical Systems (MEMS) technology.
    Type: Application
    Filed: February 6, 2018
    Publication date: January 28, 2021
    Inventors: Tomohisa OHTAKI, Takayuki MIZUNO, Ryo HIRANO, Toru FUJIMURA, Shigehiko KATO, Yasuhiko NARA, Katsuo OHKI, Akira KAGEYAMA, Masaaki KOMORI
  • Patent number: 9673020
    Abstract: A charged particle beam device capable of observing a sample in an air atmosphere or gas atmosphere has a thin film for separating the atmospheric pressure space from the decompressed space. A vacuum evacuation pump evacuates a first housing; and a detector detects a charged particle beam (obtained by irradiation of the sample) in the first housing. A thin film is provided to separate the inside of the first housing and the inside of a second housing at least along part of the interface between the first and second housings. An opening part is formed in the thin film so that its opening area on a charged particle irradiation unit's side is larger than its opening area on the sample side; and the thin film which covers the sample side of the opening part transmits or allows through the primary charged particle beam and the charged particle beam.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: June 6, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yusuke Ominami, Tomohisa Ohtaki, Sukehiro Ito
  • Patent number: 9263232
    Abstract: A charged particle beam device (1) includes a charged particle optical lens barrel (10), a support housing (20) equipped with the charged particle optical lens barrel (10) thereon, and an insertion housing (30) inserted in the support housing (20). A first aperture member (15) is disposed in the vicinity of the center of the magnetic field of an objective lens, and a second aperture member (15) is disposed so as to externally close an opening part provided at the upper side of the insertion housing (30). Further, when a primary charged particle beam (12) is irradiated to a sample (60) arranged under the lower side of the second aperture member (31), secondary charged particles thus emitted are detected by a detector (16).
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: February 16, 2016
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yusuke Ominami, Shinsuke Kawanishi, Tomohisa Ohtaki, Masahiko Ajima, Sukehiro Ito
  • Patent number: 9236217
    Abstract: A sample observation method uses a charged particle beam apparatus comprising a charged particle optical column irradiating a charged particle beam, a vacuum chamber, and a sample chamber being capable of storing a sample. The method includes maintaining a pressure of the sample chamber higher than that of the vacuum chamber by a thin film which permits the charged particle beam to be transmitted, determining a relation between a height of a lower surface of the thin film and a height of a lower end of a lens barrel of an optical microscope, measuring a distance between the sample and the lens barrel, and setting a distance between the sample and thin film based on the relation and the distance.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: January 12, 2016
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Yusuke Ominami, Mami Konomi, Sukehiro Ito, Tomohisa Ohtaki, Shinsuke Kawanishi
  • Publication number: 20150380208
    Abstract: A charged particle beam device capable of observing a sample in an air atmosphere or gas atmosphere has a thin film for separating the atmospheric pressure space from the decompressed space. A vacuum evacuation pump evacuates a first housing; and a detector detects a charged particle beam (obtained by irradiation of the sample) in the first housing. A thin film is provided to separate the inside of the first housing and the inside of a second housing at least along part of the interface between the first and second housings. An opening part is formed in the thin film so that its opening area on a charged particle irradiation unit's side is larger than its opening area on the sample side; and the thin film which covers the sample side of the opening part transmits or allows through the primary charged particle beam and the charged particle beam.
    Type: Application
    Filed: September 10, 2015
    Publication date: December 31, 2015
    Inventors: Yusuke OMINAMI, Tomohisa OHTAKI, Sukehiro ITO
  • Patent number: 9165741
    Abstract: A charged particle beam device capable of observing a sample in an air atmosphere or gas atmosphere has a thin film for separating the atmospheric pressure space from the decompressed space. A vacuum evacuation pump evacuates a first housing; and a detector detects a charged particle beam (obtained by irradiation of the sample) in the first housing. A thin film is provided to separate the inside of the first housing and the inside of a second housing at least along part of the interface between the first and second housings. An opening part is formed in the thin film so that its opening area on a charged particle irradiation unit's side is larger than its opening area on the sample side; and the thin film which covers the sample side of the opening part transmits or allows through the primary charged particle beam and the charged particle beam.
    Type: Grant
    Filed: July 4, 2012
    Date of Patent: October 20, 2015
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Yusuke Ominami, Tomohisa Ohtaki, Sukehiro Ito
  • Patent number: 9105442
    Abstract: Provided is a charged particle beam apparatus or charged particle microscope capable of observing an observation target sample in an air atmosphere or a gas environment without making significant changes to the configuration of a conventional high vacuum charged particle microscope. In a charged particle beam apparatus configured such that a thin film (10) is used to separate a vacuum environment and an air atmosphere (or a gas environment), an attachment (121) capable of holding the thin film (10) and whose interior can be maintained at an air atmosphere or a gas environment is inserted into a vacuum chamber (7) of a high vacuum charged particle microscope. The attachment (121) is vacuum-sealed and fixed to a vacuum partition of the vacuum sample chamber. Image quality is further improved by replacing the atmosphere in the attachment with helium or a light-elemental gas that has a lower mass than atmospheric gases such as nitrogen or water vapor.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: August 11, 2015
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yusuke Ominami, Sukehiro Ito, Tomohisa Ohtaki
  • Publication number: 20150129763
    Abstract: A charged particle beam device (1) includes a charged particle optical lens barrel (10), a support housing (20) equipped with the charged particle optical lens barrel (10) thereon, and an insertion housing (30) inserted in the support housing (20). A first aperture member (15) is disposed in the vicinity of the center of the magnetic field of an objective lens, and a second aperture member (15) is disposed so as to externally close an opening part provided at the upper side of the insertion housing (30). Further, when a primary charged particle beam (12) is irradiated to a sample (60) arranged under the lower side of the second aperture member (31), secondary charged particles thus emitted are detected by a detector (16).
    Type: Application
    Filed: April 11, 2013
    Publication date: May 14, 2015
    Inventors: Yusuke Ominami, Shinsuke Kawanishi, Tomohisa Ohtaki, Masahiko Ajima, Sukehiro Ito
  • Publication number: 20150083908
    Abstract: A sample observation method uses a charged particle beam apparatus comprising a charged particle optical column irradiating a charged particle beam, a vacuum chamber, and a sample chamber being capable of storing a sample. The method includes maintaining a pressure of the sample chamber higher than that of the vacuum chamber by a thin film which permits the charged particle beam to be transmitted, determining a relation between a height of a lower surface of the thin film and a height of a lower end of a lens barrel of an optical microscope, measuring a distance between the sample and the lens barrel, and setting a distance between the sample and thin film based on the relation and the distance.
    Type: Application
    Filed: December 5, 2014
    Publication date: March 26, 2015
    Inventors: Yusuke OMINAMI, Mami KONOMI, Sukehiro ITO, Tomohisa OHTAKI, Shinsuke KAWANISHI
  • Publication number: 20150076347
    Abstract: Provided is a charged particle beam apparatus or charged particle microscope capable of observing an observation target sample in an air atmosphere or a gas environment without making significant changes to the configuration of a conventional high vacuum charged particle microscope. In a charged particle beam apparatus configured such that a thin film (10) is used to separate a vacuum environment and an air atmosphere (or a gas environment), an attachment (121) capable of holding the thin film (10) and whose interior can be maintained at an air atmosphere or a gas environment is inserted into a vacuum chamber (7) of a high vacuum charged particle microscope. The attachment (121) is vacuum-sealed and fixed to a vacuum partition of the vacuum sample chamber. Image quality is further improved by replacing the atmosphere in the attachment with helium or a light-elemental gas that has a lower mass than atmospheric gases such as nitrogen or water vapor.
    Type: Application
    Filed: November 24, 2014
    Publication date: March 19, 2015
    Inventors: Yusuke Ominami, Sukehiro Ito, Tomohisa Ohtaki
  • Patent number: 8933400
    Abstract: Provided is an inspection apparatus or observation apparatus enabling appropriate inspection or observation of a sample in an easy-to-use manner, using a charged-particle technique and an optical technique.
    Type: Grant
    Filed: September 3, 2012
    Date of Patent: January 13, 2015
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yusuke Ominami, Mami Konomi, Sukehiro Ito, Tomohisa Ohtaki, Shinsuke Kawanishi
  • Patent number: 8921786
    Abstract: Provided is a charged particle beam apparatus or charged particle microscope capable of observing an observation target sample in an air atmosphere or a gas environment without making significant changes to the configuration of a conventional high vacuum charged particle microscope. In a charged particle beam apparatus configured such that a thin film (10) is used to separate a vacuum environment and an air atmosphere (or a gas environment), an attachment (121) capable of holding the thin film (10) and whose interior can be maintained at an air atmosphere or a gas environment is inserted into a vacuum chamber (7) of a high vacuum charged particle microscope. The attachment (121) is vacuum-sealed and fixed to a vacuum partition of the vacuum sample chamber. Image quality is further improved by replacing the atmosphere in the attachment with helium or a light-elemental gas that has a lower mass than atmospheric gases such as nitrogen or water vapor.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: December 30, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yusuke Ominami, Sukehiro Ito, Tomohisa Ohtaki
  • Patent number: 8921784
    Abstract: There is provided a scanning electron microscope capable of achieving a size reduction of the device while at the same time suppressing the increase in column temperature as well as maintaining performance, e.g., resolution, etc. With respect to a scanning electron microscope for observing a sample by irradiating the sample with an electron beam emitted from an electron source and focused by condenser lenses, and detecting secondary electrons from the sample, the condenser lenses comprise both an electromagnetic coil-type condenser lens and a permanent magnet-type condenser lens.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: December 30, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Toru Iwaya, Sakae Kobori, Tomohisa Ohtaki, Haruhiko Hatano
  • Publication number: 20140246583
    Abstract: Provided is an inspection apparatus or observation apparatus enabling appropriate inspection or observation of a sample in an easy-to-use manner, using a charged-particle technique and an optical technique.
    Type: Application
    Filed: September 3, 2012
    Publication date: September 4, 2014
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Yusuke Ominami, Mami Konomi, Sukehiro Ito, Tomohisa Ohtaki, Shinsuke Kawanishi
  • Patent number: 8809782
    Abstract: A scanning electron microscope includes a main scanning electron microscope unit having an electron optical column and a sample chamber, a controller over the main scanning electron microscope unit, a single housing that houses both the main scanning electron microscope unit and the controller, and a bottom plate disposed under the single housing, the main scanning electron microscope unit and the controller. A first leg member is attached to a bottom face of the bottom plate on a side of the controller with a first opening hole provided through the bottom plate on a side of the main scanning electron microscope unit, and a damper is fixed to a bottom face of the main scanning electron microscope unit and disposed through the first opening hole.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: August 19, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Tomohisa Ohtaki, Masahiko Ajima, Sukehiro Ito, Mitsuru Onuma, Akira Omachi