Patents by Inventor Tomokazu Imai

Tomokazu Imai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9921089
    Abstract: A pressure type flow rate control apparatus is provided wherein flow rate of fluid passing through an orifice is computed as Qc=KP1 (where K is a proportionality constant) or as Qc=KP2m (P1-P2)n (where K is a proportionality constant, m and n constants) by using orifice upstream side pressure P1 and/or orifice downstream side pressure P2. A fluid passage between the downstream side of a control valve and a fluid supply pipe of the pressure type flow rate control apparatus comprises at least 2 fluid passages in parallel, and orifices having different flow rate characteristics are provided for each of these fluid passages, wherein fluid in a small flow quantity area flows to one orifice for flow control of fluid in the small flow quantity area, while fluid in a large flow quantity area flows to the other orifice for flow control of fluid in the large flow quantity area.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: March 20, 2018
    Assignees: Fujikin Incorporated, National University Corporation Tohuku University, Tokyo Electron Ltd.
    Inventors: Tadahiro Ohmi, Masahito Saito, Shoichi Hino, Tsuyoshi Shimazu, Kazuyuki Miura, Kouji Nishino, Masaaki Nagase, Katsuyuki Sugita, Kaoru Hirata, Ryousuke Dohi, Takashi Hirose, Tsutomu Shinohara, Nobukazu Ikeda, Tomokazu Imai, Toshihide Yoshida, Hisashi Tanaka
  • Publication number: 20160274595
    Abstract: A pressure type flow rate control apparatus is provided wherein flow rate of fluid passing through an orifice is computed as Qc=KP1 (where K is a proportionality constant) or as Qc=KP2m(P1?P2)n (where K is a proportionality constant, m and n constants) by using orifice upstream side pressure P1 and/or orifice downstream side pressure P2. A fluid passage between the downstream side of a control valve and a fluid supply pipe of the pressure type flow rate control apparatus comprises at least 2 fluid passages in parallel, and orifices having different flow rate characteristics are provided for each of these fluid passages, wherein fluid in a small flow quantity area flows to one orifice for flow control of fluid in the small flow quantity area, while fluid in a large flow quantity area flows to the other orifice for flow control of fluid in the large flow quantity area.
    Type: Application
    Filed: June 2, 2016
    Publication date: September 22, 2016
    Inventors: Tadahiro Ohmi, Masahito Saito, Shoichi Hino, Tsuyoshi Shimazu, Kazuyuki Miura, Kouji Nishino, Masaaki Nagase, Katsuyuki Sugita, Kaoru Hirata, Ryousuke Dohi, Takashi Hirose, Tsutomu Shinohara, Nobukazu Ikeda, Tomokazu Imai, Toshihide Yoshida, Hisashi Tanaka
  • Patent number: 9383758
    Abstract: A pressure type flow rate control apparatus is provided wherein flow rate of fluid passing through an orifice is computed as Qc=KP1 (where K is a proportionality constant) or as Qc=KP2m(P1?P2)n (where K is a proportionality constant, m and n constants) by using orifice upstream side pressure P1 and/or orifice downstream side pressure P2. A fluid passage between the downstream side of a control valve and a fluid supply pipe of the pressure type flow rate control apparatus comprises at least 2 fluid passages in parallel, and orifices having different flow rate characteristics are provided for each of these fluid passages, wherein fluid in a small flow quantity area flows to one orifice for flow control of fluid in the small flow quantity area, while fluid in a large flow quantity area flows to the other orifice for flow control of fluid in the large flow quantity area.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: July 5, 2016
    Assignees: Fujikin Incorporated, National University Corporation Tohoku University, Tokyo Electron Ltd.
    Inventors: Tadahiro Ohmi, Masahito Saito, Shoichi Hino, Tsuyoshi Shimazu, Kazuyuki Miura, Kouji Nishino, Masaaki Nagase, Katsuyuki Sugita, Kaoru Hirata, Ryousuke Dohi, Takashi Hirose, Tsutomu Shinohara, Nobukazu Ikeda, Tomokazu Imai, Toshihide Yoshida, Hisashi Tanaka
  • Publication number: 20160109886
    Abstract: A pressure type flow rate control apparatus is provided wherein flow rate of fluid passing through an orifice is computed as Qc=KP1 (where K is a proportionality constant) or as Qc=KP2m(P1?P2)n (where K is a proportionality constant, m and n constants) by using orifice upstream side pressure P1 and/or orifice downstream side pressure P2. A fluid passage between the downstream side of a control valve and a fluid supply pipe of the pressure type flow rate control apparatus comprises at least 2 fluid passages in parallel, and orifices having different flow rate characteristics are provided for each of these fluid passages, wherein fluid in a small flow quantity area flows to one orifice for flow control of fluid in the small flow quantity area, while fluid in a large flow quantity area flows to the other orifice for flow control of fluid in the large flow quantity area.
    Type: Application
    Filed: December 21, 2015
    Publication date: April 21, 2016
    Inventors: Tadahiro Ohmi, Masahito Saito, Shoichi Hino, Tsuyoshi Shimazu, Kazuyuki Miura, Kouji Nishino, Masaaki Nagase, Katsuyuki Sugita, Kaoru Hirata, Ryousuke Dohi, Takashi Hirose, Tsutomu Shinohara, Nobukazu Ikeda, Tomokazu Imai, Toshihide Yoshida, Hisashi Tanaka
  • Patent number: 9133951
    Abstract: An orifice changeable pressure type flow rate control apparatus comprises a valve body of a control valve for a pressure type flow rate control apparatus installed between an inlet side fitting block provided with a coupling part of a fluid supply pipe and an outlet side fitting block provided with a coupling part of a fluid takeout pipe; a fluid inlet side of the valve body and the inlet side fitting block, and a fluid outlet side of the valve body and the outlet side fitting block are detachably and hermitically connected respectively so a flow passage for gases through the control valve is formed; and, a gasket type orifice for a pressure type flow rate control apparatus is removably inserted between a gasket type orifice insertion hole provided on the outlet side of the valve body and a gasket type orifice insertion hole of the outlet side fitting block.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: September 15, 2015
    Assignees: Fujikin Incorporated, National University Corporation Tohoku University
    Inventors: Tadahiro Ohmi, Kouji Nishino, Ryousuke Dohi, Nobukazu Ikeda, Masaaki Nagase, Kaoru Hirata, Katsuyuki Sugita, Tsutomu Shinohara, Takashi Hirose, Tomokazu Imai, Toshihide Yoshida, Hisashi Tanaka
  • Publication number: 20150160662
    Abstract: A pressure type flow rate control apparatus is provided wherein flow rate of fluid passing through an orifice is computed as Qc=KP1 (where K is a proportionality constant) or as Qc=KP2m (P1?P2)n (where K is a proportionality constant, m and n constants) by using orifice upstream side pressure P1 and/or orifice downstream side pressure P2. A fluid passage between the downstream side of a control valve and a fluid supply pipe of the pressure type flow rate control apparatus comprises at least 2 fluid passages in parallel, and orifices having different flow rate characteristics are provided for each of these fluid passages, wherein fluid in a small flow quantity area flows to one orifice for flow control of fluid in the small flow quantity area, while fluid in a large flow quantity area flows to the other orifice for flow control of fluid in the large flow quantity area.
    Type: Application
    Filed: February 19, 2015
    Publication date: June 11, 2015
    Inventors: Tadahiro Ohmi, Masahito Saito, Shoichi Hino, Tsuyoshi Shimazu, Kazuyuki Miura, Kouji Nishino, Masaaki Nagase, Katsuyuki Sugita, Kaoru Hirata, Ryousuke Dohi, Takashi Hirose, Tsutomu Shinohara, Nobukazu Ikeda, Tomokazu Imai, Toshihide Yoshida, Hisashi Tanaka
  • Patent number: 9010369
    Abstract: A pressure type flow rate control apparatus is provided wherein flow rate of fluid passing through an orifice is computed as Qc=KP1 (where K is a proportionality constant) or as Qc=KP2m (P1?P2)n (where K is a proportionality constant, m and n constants) by using orifice upstream side pressure P1 and/or orifice downstream side pressure P2. A fluid passage between the downstream side of a control valve and a fluid supply pipe of the pressure type flow rate control apparatus comprises at least 2 fluid passages in parallel, and orifices having different flow rate characteristics are provided for each of these fluid passages, wherein fluid in a small flow quantity area flows to one orifice for flow control of fluid in the small flow quantity area, while fluid in a large flow quantity area flows to the other orifice for flow control of fluid in the large flow quantity area.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: April 21, 2015
    Assignees: Fujikin Incorporated, National University Corporation Tohoku University, Tokyo Electron Ltd.
    Inventors: Tadahiro Ohmi, Masahito Saito, Shoichi Hino, Tsuyoshi Shimazu, Kazuyuki Miura, Kouji Nishino, Masaaki Nagase, Katsuyuki Sugita, Kaoru Hirata, Ryousuke Dohi, Takashi Hirose, Tsutomu Shinohara, Nobukazu Ikeda, Tomokazu Imai, Toshihide Yoshida, Hisashi Tanaka
  • Publication number: 20140096938
    Abstract: The heat dissipation device is provided with a body portion, to which a heating element is thermally coupled. A coolant passage through which the coolant, which dissipates heat of the heating element, flows is provided in the body portion. A passage forming portion, which forms at least one of an inflow passage and an outflow passage, is molded integrally with the body portion.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 10, 2014
    Applicants: TOKAISEIKI CO., LTD., KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Hiroyuki KOJIMA, Kazuhiro WAKAI, Yoshiharu YOSHIDA, Toshiyo MUROYA, Yoshimitsu MASUI, Tomokazu IMAI, Tomohide TAKIMOTO
  • Patent number: 8418714
    Abstract: A pressure type flow rate control apparatus is provided wherein flow rate of fluid passing through an orifice is computed as Qc=KP1 (where K is a proportionality constant) or as Qc=KP2m(P1?P2)n (where K is a proportionality constant, m and n constants) by using orifice upstream side pressure P1 and/or orifice downstream side pressure P2. A fluid passage between the downstream side of a control valve and a fluid supply pipe of the pressure type flow rate control apparatus comprises at least 2 fluid passages in parallel, and orifices having different flow rate characteristics are provided for each of these fluid passages, wherein fluid in a small flow quantity area flows to one orifice for flow control of fluid in the small flow quantity area, while fluid in a large flow quantity area flows to the other orifice for flow control of fluid in the large flow quantity area.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: April 16, 2013
    Assignees: Fujikin Incorporated, National University Corporation Tohoku University, Tokyo Electron Ltd.
    Inventors: Tadahiro Ohmi, Masahito Saito, Shoichi Hino, Tsuyoshi Shimazu, Kazuyuki Miura, Kouji Nishino, Masaaki Nagase, Katsuyuki Sugita, Kaoru Hirata, Ryousuke Dohi, Takashi Hirose, Tsutomu Shinohara, Nobukazu Ikeda, Tomokazu Imai, Toshihide Yoshida, Hisashi Tanaka
  • Publication number: 20100139775
    Abstract: A pressure type flow control device enabling a reduction in size and an installation cost by accurately controlling the flow of a fluid in a wide flow range. Specifically, the flow of the fluid flowing in an orifice (8) is calculated as Qc=KP1 (K is a proportionality factor) or Qc=KP2m(P1?P2)n (K is a proportionality factor and m and n are constants) by using a pressure P1 on the upstream side of the orifice and a pressure P2 on the downstream side of the orifice. A fluid passage between the downstream side of the control valve of the flow control device and a fluid feed pipe is formed of at least two or more fluid passages positioned parallel with each other. Orifices with different fluid flow characteristics are interposed in the fluid passages positioned parallel with each other. For the control of the fluid in a small flow area, the fluid in the small flow area is allowed to flow to one orifice.
    Type: Application
    Filed: June 22, 2006
    Publication date: June 10, 2010
    Applicants: FUJIKIN INCORPORATED, NATIONAL UNIVERSITY CORPORATION TOHOKU UNIVERSITY, TOKYO ELECTRON LTD.
    Inventors: Tadahiro Ohmi, Masahito Saito, Shoichi Hino, Tsuyoshi Shimazu, Kazuyuki Miura, Kouji Nishino, Masaaki Nagase, Katsuyuki Sugita, Kaoru Hirata, Ryousuke Dohi, Takashi Hirose, Tsutomu Shinohara, Nobukazu Ikeda, Tomokazu Imai, Toshihide Yoshida, Hisashi Tanaka
  • Publication number: 20090171507
    Abstract: An orifice changeable pressure type flow rate control apparatus comprises a valve body of a control valve for a pressure type flow rate control apparatus installed between an inlet side fitting block provided with a coupling part of a fluid supply pipe and an outlet side fitting block provided with a coupling part of a fluid takeout pipe; a fluid inlet side of the valve body and the inlet side fitting block, and a fluid outlet side of the valve body and the outlet side fitting block are detachably and hermitically connected respectively so a flow passage for gases through the control valve is formed; and, a gasket type orifice for a pressure type flow rate control apparatus is removably inserted between a gasket type orifice insertion hole provided on the outlet side of the valve body and a gasket type orifice insertion hole of the outlet side fitting block.
    Type: Application
    Filed: May 10, 2006
    Publication date: July 2, 2009
    Applicants: FUJIKIN INCORPORATED, NATIONAL UNIVERSITY CORPORATION TOHOKU UNIVERSITY
    Inventors: Tadahiro Ohmi, Kouji Nishino, Ryousuke Dohi, Nobukazu Ikeda, Masaaki Nagase, Kaoru Hirata, Katsuyuki Sugita, Tsutomu Shinohara, Takashi Hirose, Tomokazu Imai, Toshihide Yoshida, Hisashi Tanaka
  • Patent number: D633181
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: February 22, 2011
    Assignee: Fujikin Incorporated
    Inventors: Tsutomu Shinohara, Michio Yamaji, Tomokazu Imai