Patents by Inventor Tomoko Fujiwara
Tomoko Fujiwara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11878088Abstract: The invention includes chitosan nanofibers having enhanced structural integrity, compositions comprising such chitosan nanofibers, and related methods of use. In a particular aspect, electrospun chitosan nanofibers can be reversibly acylated to enhance structural integrity and promote healing and the formation of tissues in a subject. In another aspect, electrospun chitosan nanofibers comprising at least a portion of the amino groups protected, such as through N-tert-butoxycarbonyl groups, demonstrate enhanced structural integrity and promote healing and the formation of tissues in a subject. The invention also includes compositions and methods for producing a modified chitosan material having anti-inflammatory and pro-healing characteristics and methods of using the modified chitosan materials in a film, a gel, a membrane, microfibers, nanofibers, nano- or micro-particles/spheres and/or sponges. In some aspects, microspheres and methods of producing microspheres comprising modified chitosan are included.Type: GrantFiled: December 1, 2021Date of Patent: January 23, 2024Assignee: The University of Memphis Research FoundationInventors: Joel D. Bumgardner, Hengjie Su, Tomoko Fujiwara, Daniel G. Abebe, Kwei-Yu Liu
-
Publication number: 20240008276Abstract: A nonvolatile semiconductor memory device, includes: a stacked structural unit including a plurality of insulating films alternately stacked with a plurality of electrode films in a first direction; a selection gate electrode stacked on the stacked structural unit in the first direction; an insulating layer stacked on the selection gate electrode in the first direction; a first semiconductor pillar piercing the stacked structural unit, the selection gate electrode, and the insulating layer in the first direction, a first cross section of the first semiconductor pillar having an annular configuration, the first cross section being cut in a plane orthogonal to the first direction; a first core unit buried in an inner side of the first semiconductor pillar, the first core unit being recessed from an upper face of the insulating layer; and a first conducting layer of the first semiconductor pillar provided on the first core unit to contact the first core unit.Type: ApplicationFiled: September 12, 2023Publication date: January 4, 2024Applicant: KIOXIA CORPORATIONInventors: Yoshiaki FUKUZUMI, Ryota KATSUMATA, Masaru KITO, Masaru KIDOH, Hiroyasu TANAKA, Yosuke KOMORI, Megumi ISHIDUKI, Junya MATSUNAMI, Tomoko FUJIWARA, Hideaki AOCHI, Ryouhei KIRISAWA, Yoshimasa MIKAJIRI, Shigeto OOTA
-
Patent number: 11792992Abstract: A nonvolatile semiconductor memory device, includes: a stacked structural unit including a plurality of insulating films alternately stacked with a plurality of electrode films in a first direction; a selection gate electrode stacked on the stacked structural unit in the first direction; an insulating layer stacked on the selection gate electrode in the first direction; a first semiconductor pillar piercing the stacked structural unit, the selection gate electrode, and the insulating layer in the first direction, a first cross section of the first semiconductor pillar having an annular configuration, the first cross section being cut in a plane orthogonal to the first direction; a first core unit buried in an inner side of the first semiconductor pillar, the first core unit being recessed from an upper face of the insulating layer; and a first conducting layer of the first semiconductor pillar provided on the first core unit to contact the first core unit.Type: GrantFiled: January 14, 2022Date of Patent: October 17, 2023Assignee: Kioxia CorporationInventors: Yoshiaki Fukuzumi, Ryota Katsumata, Masaru Kito, Masaru Kidoh, Hiroyasu Tanaka, Yosuke Komori, Megumi Ishiduki, Junya Matsunami, Tomoko Fujiwara, Hideaki Aochi, Ryouhei Kirisawa, Yoshimasa Mikajiri, Shigeto Oota
-
Publication number: 20220160935Abstract: The invention includes chitosan nanofibers having enhanced structural integrity, compositions comprising such chitosan nanofibers, and related methods of use. In a particular aspect, electrospun chitosan nanofibers can be reversibly acylated to enhance structural integrity and promote healing and the formation of tissues in a subject. In another aspect, electrospun chitosan nanofibers comprising at least a portion of the amino groups protected, such as through N-tert-butoxycarbonyl groups, demonstrate enhanced structural integrity and promote healing and the formation of tissues in a subject. The invention also includes compositions and methods for producing a modified chitosan material having anti-inflammatory and pro-healing characteristics and methods of using the modified chitosan materials in a film, a gel, a membrane, microfibers, nanofibers, nano- or micro-particles/spheres and/or sponges. In some aspects, microspheres and methods of producing microspheres comprising modified chitosan are included.Type: ApplicationFiled: December 1, 2021Publication date: May 26, 2022Applicant: The University of Memphis Research FoundationInventors: Joel D. Bumgardner, Hengjie Su, Tomoko Fujiwara, Daniel G. Abebe, Kwei-Yu Liu
-
Publication number: 20220139955Abstract: A nonvolatile semiconductor memory device, includes: a stacked structural unit including a plurality of insulating films alternately stacked with a plurality of electrode films in a first direction; a selection gate electrode stacked on the stacked structural unit in the first direction; an insulating layer stacked on the selection gate electrode in the first direction; a first semiconductor pillar piercing the stacked structural unit, the selection gate electrode, and the insulating layer in the first direction, a first cross section of the first semiconductor pillar having an annular configuration, the first cross section being cut in a plane orthogonal to the first direction; a first core unit buried in an inner side of the first semiconductor pillar, the first core unit being recessed from an upper face of the insulating layer; and a first conducting layer of the first semiconductor pillar provided on the first core unit to contact the first core unit.Type: ApplicationFiled: January 14, 2022Publication date: May 5, 2022Applicant: Kioxia CorporationInventors: Yoshiaki FUKUZUMI, Ryota KATSUMATA, Masaru KITO, Masaru KIDOH, Hiroyasu TANAKA, Yosuke KOMORI, Megumi ISHIDUKI, Junya MATSUNAMI, Tomoko FUJIWARA, Hideaki AOCHI, Ryouhei KIRISAWA, Yoshimasa MIKAJIRI, Shigeto OOTA
-
Patent number: 11257842Abstract: A nonvolatile semiconductor memory device, includes: a stacked structural unit including a plurality of insulating films alternately stacked with a plurality of electrode films in a first direction; a selection gate electrode stacked on the stacked structural unit in the first direction; an insulating layer stacked on the selection gate electrode in the first direction; a first semiconductor pillar piercing the stacked structural unit, the selection gate electrode, and the insulating layer in the first direction, a first cross section of the first semiconductor pillar having an annular configuration, the first cross section being cut in a plane orthogonal to the first direction; a first core unit buried in an inner side of the first semiconductor pillar, the first core unit being recessed from an upper face of the insulating layer; and a first conducting layer of the first semiconductor pillar provided on the first core unit to contact the first core unit.Type: GrantFiled: April 15, 2020Date of Patent: February 22, 2022Assignee: Kioxia CorporationInventors: Yoshiaki Fukuzumi, Ryota Katsumata, Masaru Kito, Masaru Kidoh, Hiroyasu Tanaka, Yosuke Komori, Megumi Ishiduki, Junya Matsunami, Tomoko Fujiwara, Hideaki Aochi, Ryouhei Kirisawa, Yoshimasa Mikajiri, Shigeto Oota
-
Patent number: 11229721Abstract: The invention includes chitosan nanofibers having enhanced structural integrity, compositions comprising such chitosan nanofibers, and related methods of use. In a particular aspect, electrospun chitosan nanofibers can be reversibly acylated to enhance structural integrity and promote healing and the formation of tissues in a subject. In another aspect, electrospun chitosan nanofibers comprising at least a portion of the amino groups protected, such as through N-tert-butoxycarbonyl groups, demonstrate enhanced structural integrity and promote healing and the formation of tissues in a subject. The invention also includes compositions and methods for producing a modified chitosan material having anti-inflammatory and pro-healing characteristics and methods of using the modified chitosan materials in a film, a gel, a membrane, microfibers, nanofibers, nano- or micro-particles/spheres and/or sponges. In some aspects, microspheres and methods of producing microspheres comprising modified chitosan are included.Type: GrantFiled: February 27, 2015Date of Patent: January 25, 2022Assignee: THE UNIVERSITY OF MEMPHIS RESEARCH FOUNDATIONInventors: Joel D. Bumgardner, Chaoxi Wu, Hengjie Su, Tomoko Fujiwara, Daniel G. Abebe, Kwei-Yu Liu, Gregory McGraw, Carlos Lee Bumgardner
-
Publication number: 20210275440Abstract: The invention provides microbeads comprising chitosan, a magnetic nanoparticle, and an agent, and methods for using such microbeads for the local delivery of biologically active agents to an open fracture, complex wound or other site of infection or disease.Type: ApplicationFiled: September 27, 2017Publication date: September 9, 2021Applicant: THE UNIVERSITY OF MEMPHIS RESEARCH FOUNDATIONInventors: ANKITA MOHAPATRA, MICHAEL A. HARRIS, BASHIR I. MORSHED, JESSICA A. JENNINGS, JOEL BUMGARDNER, TOMOKO FUJIWARA, SANJAY R. MISHRA, DAVID A. LEVINE, GREGORY MCGRAW, WARREN O. HAGGARD
-
Patent number: 11090694Abstract: A testing apparatus according to an embodiment includes a chamber, a probe card including probes exposed in the chamber, a stage supporting a test target object in the chamber, a moving mechanism to move the stage between a testing position where the test target object is in contact with the probes and a cleaning position where the test target object is arranged away from the probes in a horizontal direction, and an air tube introducing first dry air into the chamber through the probe card when the stage is placed at the cleaning position.Type: GrantFiled: March 11, 2019Date of Patent: August 17, 2021Assignee: TOSHIBA MEMORY CORPORATIONInventors: Tomoko Fujiwara, Takao Sueyama, Keiko Kaneda, Michiko Tsumura
-
Patent number: 10861930Abstract: A semiconductor memory device includes an n-type source/drain formed in a surface region of a p-type active region, and a gate. The semiconductor memory device also includes a withstand voltage improvement layer provided with a preset distance maintained from at least one end of the source/drain. N-type impurities are diffused in the withstand voltage improvement layer, and a withstand voltage improvement voltage is applied to the withstand voltage improvement layer to expand a depletion layer to reach the source/drain, so that the maximum withstand voltage value of a transistor is increased.Type: GrantFiled: March 14, 2019Date of Patent: December 8, 2020Assignee: TOSHIBA MEMORY CORPORATIONInventors: Takao Sueyama, Keiko Kaneda, Tomoko Fujiwara
-
Publication number: 20200243560Abstract: A nonvolatile semiconductor memory device, includes: a stacked structural unit including a plurality of insulating films alternately stacked with a plurality of electrode films in a first direction; a selection gate electrode stacked on the stacked structural unit in the first direction; an insulating layer stacked on the selection gate electrode in the first direction; a first semiconductor pillar piercing the stacked structural unit, the selection gate electrode, and the insulating layer in the first direction, a first cross section of the first semiconductor pillar having an annular configuration, the first cross section being cut in a plane orthogonal to the first direction; a first core unit buried in an inner side of the first semiconductor pillar, the first core unit being recessed from an upper face of the insulating layer; and a first conducting layer of the first semiconductor pillar provided on the first core unit to contact the first core unit.Type: ApplicationFiled: April 15, 2020Publication date: July 30, 2020Applicant: TOSHIBA MEMORY CORPORATIONInventors: Yoshiaki FUKUZUMI, Ryota Katsumata, Masaru Kito, Masaru Kidoh, Hiroyasu Tanaka, Yosuke Komori, Megumi Ishiduki, Junya Matsunami, Tomoko Fujiwara, Hideaki Aochi, Ryouhei Kirisawa, Yoshimasa Mikajiri, Shigeto Oota
-
Patent number: 10658383Abstract: A nonvolatile semiconductor memory device, includes: a stacked structural unit including a plurality of insulating films alternately stacked with a plurality of electrode films in a first direction; a selection gate electrode stacked on the stacked structural unit in the first direction; an insulating layer stacked on the selection gate electrode in the first direction; a first semiconductor pillar piercing the stacked structural unit, the selection gate electrode, and the insulating layer in the first direction, a first cross section of the first semiconductor pillar having an annular configuration, the first cross section being cut in a plane orthogonal to the first direction; a first core unit buried in an inner side of the first semiconductor pillar, the first core unit being recessed from an upper face of the insulating layer; and a first conducting layer of the first semiconductor pillar provided on the first core unit to contact the first core unit.Type: GrantFiled: July 23, 2019Date of Patent: May 19, 2020Assignee: TOSHIBA MEMORY CORPORATIONInventors: Yoshiaki Fukuzumi, Ryota Katsumata, Masaru Kito, Masaru Kidoh, Hiroyasu Tanaka, Yosuke Komori, Megumi Ishiduki, Junya Matsunami, Tomoko Fujiwara, Hideaki Aochi, Ryouhei Kirisawa, Yoshimasa Mikajiri, Shigeto Oota
-
Publication number: 20200091280Abstract: A semiconductor memory device includes an n-type source/drain formed in a surface region of a p-type active region, and a gate. The semiconductor memory device also includes a withstand voltage improvement layer provided with a preset distance maintained from at least one end of the source/drain. N-type impurities are diffused in the withstand voltage improvement layer, and a withstand voltage improvement voltage is applied to the withstand voltage improvement layer to expand a depletion layer to reach the source/drain, so that the maximum withstand voltage value of a transistor is increased.Type: ApplicationFiled: March 14, 2019Publication date: March 19, 2020Applicant: TOSHIBA MEMORY CORPORATIONInventors: Takao SUEYAMA, Keiko KANEDA, Tomoko FUJIWARA
-
Publication number: 20200030856Abstract: A testing apparatus according to an embodiment includes a chamber, a probe card including probes exposed in the chamber, a stage supporting a test target object in the chamber, a moving mechanism to move the stage between a testing position where the test target object is in contact with the probes and a cleaning position where the test target object is arranged away from the probes in a horizontal direction, and an air tube introducing first dry air into the chamber through the probe card when the stage is placed at the cleaning position.Type: ApplicationFiled: March 11, 2019Publication date: January 30, 2020Applicant: TOSHIBA MEMORY CORPORATIONInventors: Tomoko FUJIWARA, Takao Sueyama, Keiko Kaneda, Michiko Tsumura
-
Publication number: 20190348437Abstract: A nonvolatile semiconductor memory device, includes: a stacked structural unit including a plurality of insulating films alternately stacked with a plurality of electrode films in a first direction; a selection gate electrode stacked on the stacked structural unit in the first direction; an insulating layer stacked on the selection gate electrode in the first direction; a first semiconductor pillar piercing the stacked structural unit, the selection gate electrode, and the insulating layer in the first direction, a first cross section of the first semiconductor pillar having an annular configuration, the first cross section being cut in a plane orthogonal to the first direction; a first core unit buried in an inner side of the first semiconductor pillar, the first core unit being recessed from an upper face of the insulating layer; and a first conducting layer of the first semiconductor pillar provided on the first core unit to contact the first core unit.Type: ApplicationFiled: July 23, 2019Publication date: November 14, 2019Applicant: Toshiba Memory CorporationInventors: Yoshiaki FUKUZUMI, Ryota KATSUMATA, Masaru KITO, Masaru KIDOH, Hiroyasu TANAKA, Yosuke KOMORI, Megumi ISHIDUKI, Junya MATSUNAMI, Tomoko FUJIWARA, Hideaki AOCHI, Ryouhei KIRISAWA, Yoshimasa MIKAJIRI, Shigeto OOTA
-
Patent number: 10418378Abstract: A nonvolatile semiconductor memory device, includes: a stacked structural unit including a plurality of insulating films alternately stacked with a plurality of electrode films in a first direction; a selection gate electrode stacked on the stacked structural unit in the first direction; an insulating layer stacked on the selection gate electrode in the first direction; a first semiconductor pillar piercing the stacked structural unit, the selection gate electrode, and the insulating layer in the first direction, a first cross section of the first semiconductor pillar having an annular configuration, the first cross section being cut in a plane orthogonal to the first direction; a first core unit buried in an inner side of the first semiconductor pillar, the first core unit being recessed from an upper face of the insulating layer; and a first conducting layer of the first semiconductor pillar provided on the first core unit to contact the first core unit.Type: GrantFiled: March 8, 2018Date of Patent: September 17, 2019Assignee: TOSHIBA MEMORY CORPORATIONInventors: Yoshiaki Fukuzumi, Ryota Katsumata, Masaru Kito, Masaru Kidoh, Hiroyasu Tanaka, Yosuke Komori, Megumi Ishiduki, Junya Matsunami, Tomoko Fujiwara, Hideaki Aochi, Ryouhei Kirisawa, Yoshimasa Mikajiri, Shigeto Oota
-
Publication number: 20180197878Abstract: A nonvolatile semiconductor memory device, includes: a stacked structural unit including a plurality of insulating films alternately stacked with a plurality of electrode films in a first direction; a selection gate electrode stacked on the stacked structural unit in the first direction; an insulating layer stacked on the selection gate electrode in the first direction; a first semiconductor pillar piercing the stacked structural unit, the selection gate electrode, and the insulating layer in the first direction, a first cross section of the first semiconductor pillar having an annular configuration, the first cross section being cut in a plane orthogonal to the first direction; a first core unit buried in an inner side of the first semiconductor pillar, the first core unit being recessed from an upper face of the insulating layer; and a first conducting layer of the first semiconductor pillar provided on the first core unit to contact the first core unit.Type: ApplicationFiled: March 8, 2018Publication date: July 12, 2018Applicant: TOSHIBA MEMORY CORPORATIONInventors: Yoshiaki Fukuzumi, Ryota Katsumata, Masaru Kito, Masaru Kidoh, Hiroyasu Tanaka, Yosuke Komori, Megumi Ishiduki, Junya Matsunami, Tomoko Fujiwara, Hideaki Aochi, Ryouhei Kirisawa, Yoshimasa Mikajiri, Shigeto Oota
-
Patent number: 9941296Abstract: A nonvolatile semiconductor memory device, includes: a stacked structural unit including a plurality of insulating films alternately stacked with a plurality of electrode films in a first direction; a selection gate electrode stacked on the stacked structural unit in the first direction; an insulating layer stacked on the selection gate electrode in the first direction; a first semiconductor pillar piercing the stacked structural unit, the selection gate electrode, and the insulating layer in the first direction, a first cross section of the first semiconductor pillar having an annular configuration, the first cross section being cut in a plane orthogonal to the first direction; a first core unit buried in an inner side of the first semiconductor pillar, the first core unit being recessed from an upper face of the insulating layer; and a first conducting layer of the first semiconductor pillar provided on the first core unit to contact the first core unit.Type: GrantFiled: February 3, 2017Date of Patent: April 10, 2018Assignee: TOSHIBA MEMORY CORPORATIONInventors: Yoshiaki Fukuzumi, Ryota Katsumata, Masaru Kito, Masaru Kidoh, Hiroyasu Tanaka, Yosuke Komori, Megumi Ishiduki, Junya Matsunami, Tomoko Fujiwara, Hideaki Aochi, Ryouhei Kirisawa, Yoshimasa Mikajiri, Shigeto Oota
-
Patent number: RE48191Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes a substrate, a stacked body, a semiconductor pillar, a charge storage film, and a drive circuit. The stacked body is provided on the substrate. The stacked body includes a plurality of insulating films alternately stacked with a plurality of electrode films. A through-hole is made in the stacked body to align in a stacking direction. The semiconductor pillar is buried in an interior of the through-hole. The charge storage film is provided between the electrode film and the semiconductor pillar. The drive circuit supplies a potential to the electrode film. The diameter of the through-hole differs by a position in the stacking direction. The drive circuit supplies a potential to reduce a potential difference with the semiconductor pillar as a diameter of the through-hole piercing the electrode film decreases.Type: GrantFiled: February 6, 2018Date of Patent: September 1, 2020Assignee: TOSHIBA MEMORY CORPORATIONInventors: Ryota Katsumata, Hideaki Aochi, Hiroyasu Tanaka, Masaru Kito, Yoshiaki Fukuzumi, Masaru Kidoh, Yosuke Komori, Megumi Ishiduki, Junya Matsunami, Tomoko Fujiwara, Ryouhei Kirisawa, Yoshimasa Mikajiri, Shigeto Oota
-
Patent number: RE49152Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes a substrate, a stacked body, a semiconductor pillar, a charge storage film, and a drive circuit. The stacked body is provided on the substrate. The stacked body includes a plurality of insulating films alternately stacked with a plurality of electrode films. A through-hole is made in the stacked body to align in a stacking direction. The semiconductor pillar is buried in an interior of the through-hole. The charge storage film is provided between the electrode film and the semiconductor pillar. The drive circuit supplies a potential to the electrode film. The diameter of the through-hole differs by a position in the stacking direction. The drive circuit supplies a potential to reduce a potential difference with the semiconductor pillar as a diameter of the through-hole piercing the electrode film decreases.Type: GrantFiled: July 10, 2020Date of Patent: July 26, 2022Assignee: Kioxia CorporationInventors: Ryota Katsumata, Hideaki Aochi, Hiroyasu Tanaka, Masaru Kito, Yoshiaki Fukuzumi, Masaru Kidoh, Yosuke Komori, Megumi Ishiduki, Junya Matsunami, Tomoko Fujiwara, Ryouhei Kirisawa, Yoshimasa Mikajiri, Shigeto Oota