Patents by Inventor Tomoko OHKI

Tomoko OHKI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11486843
    Abstract: The present invention is to provide a small-sized dryness/wetness responsive sensor that detects a galvanic current with a high sensitivity as a principle of operation. According to one embodiment of the present invention, a dryness/wetness responsive sensor comprises a thin wire made of a first metal and a thin wire made of a second metal, the second metal is different from the first metal, the thin wire of the first metal and the thin wire of the second metal are disposed in juxtaposition with each other on an insulating substrate, and a surface state of a part between the thin wire of the first metal and the thin wire of the second metal is hydrophilic or hydrophobic.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: November 1, 2022
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Jin Kawakita, Akihiko Ohi, Tomoko Ohki, Naoki Ikeda, Toshihide Nabatame, Toyohiro Chikyo
  • Publication number: 20200249185
    Abstract: The present invention is to provide a small-sized dryness/wetness responsive sensor that detects a galvanic current with a high sensitivity as a principle of operation. According to one embodiment of the present invention, a dryness/wetness responsive sensor comprises a thin wire made of a first metal and a thin wire made of a second metal, the second metal is different from the first metal, the thin wire of the first metal and the thin wire of the second metal are disposed in juxtaposition with each other on an insulating substrate, and a surface state of a part between the thin wire of the first metal and the thin wire of the second metal is hydrophilic or hydrophobic.
    Type: Application
    Filed: August 23, 2018
    Publication date: August 6, 2020
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Jin KAWAKITA, Akihiko OHI, Tomoko OHKI, Naoki IKEDA, Toshihide NABATAME, Toyohiro CHIKYO
  • Publication number: 20190145920
    Abstract: The present invention improves the sensitivity and the responsiveness of a dryness/wetness responsive sensor utilizing a galvanic current, allowing for downsizing of the dryness/wetness responsive sensor. Instead of the conventional structure in which an anode electrode and a cathode electrode are stacked with an intervening insulator, the present invention employs a structure in which both electrodes run in juxtaposition with each other on an insulating substrate in the form of, for example, a comb-shaped electrode as shown in the drawing. By utilizing a semiconductor manufacturing process or any other micro/nano-fabrication technology, an inter-electrode distance can be extremely shortened as compared with the conventional sensors, allowing enhancing the sensitivity per unit footprint of the electrodes. Accordingly, a decrease in the size of the dryness/wetness responsive sensor can be easily achieved.
    Type: Application
    Filed: December 19, 2018
    Publication date: May 16, 2019
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Jin KAWAKITA, Tadashi SHINOHARA, Toyohiro CHIKYO, Toshihide NABATAME, Akihiko OHI, Tomoko OHKI
  • Patent number: 10267756
    Abstract: A dryness/wetness responsive sensor having decreased size, and improved sensitivity and responsiveness. The present invention comprises a thin wire of a first metal and a thin wire of a second metal, which is different from the first metal, wherein the thin wires run in juxtaposition with each other on an insulating substrate, and wherein the spacing between the first thin wire and the second thin wire is in the range of 5 nm or more and less than 20 ?m.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: April 23, 2019
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Jin Kawakita, Tadashi Shinohara, Toyohiro Chikyo, Toshihide Nabatame, Akihiko Ohi, Tomoko Ohki
  • Publication number: 20170167995
    Abstract: The present invention improves the sensitivity and the responsiveness of a dryness/wetness responsive sensor utilizing a galvanic current, allowing for downsizing of the dryness/wetness responsive sensor. Instead of the conventional structure in which an anode electrode and a cathode electrode are stacked with an intervening insulator, the present invention employs a structure in which both electrodes run in juxtaposition with each other on an insulating substrate in the form of, for example, a comb-shaped electrode as shown in the drawing. By utilizing a semiconductor manufacturing process or any other micro/nano-fabrication technology, an inter-electrode distance can be extremely shortened as compared with the conventional sensors, allowing enhancing the sensitivity per unit footprint of the electrodes. Accordingly, a decrease in the size of the dryness/wetness responsive sensor can be easily achieved.
    Type: Application
    Filed: July 21, 2015
    Publication date: June 15, 2017
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Jin KAWAKITA, Tadashi SHINOHARA, Toyohiro CHIKYO, Toshihide NABATAME, Akihiko OHI, Tomoko OHKI