Patents by Inventor Tomoyuki Sotokawa

Tomoyuki Sotokawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9856148
    Abstract: Provided are: an alkali metal titanium oxide having a uniform composition and that is such that there are no residual by-products having a different composition or unreacted starting materials; and a method for producing a titanium oxide and proton exchange body obtained by processing the alkali metal titanium oxide. The method produces an alkali metal titanium oxide by firing the result of impregnating the surface and inside of pores of porous titanium compound particles with an aqueous solution of an alkali metal-containing component. The alkali metal titanium oxide is subjected to proton exchange, and with the proton exchange body of the alkali metal titanium oxide as the starting material, the titanium oxide is produced through a heat processing step.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: January 2, 2018
    Assignees: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, ISHIHARA SANGYO KAISHA, LTD.
    Inventors: Hideaki Nagai, Junji Akimoto, Kunimitsu Kataoka, Yoshimasa Kumashiro, Tomoyuki Sotokawa, Nobuharu Koshiba
  • Publication number: 20160344025
    Abstract: Provided is a titanate compound capable of further increasing the capacity of a power storage device when used as an electrode active material thereof. The titanate compound according to the present invention includes at least 60%, based on the number thereof, of particles having an anisotropic shape and a specific surface area of 10-30 m2/g as measured by a nitrogen adsorption BET one-point method, and having a long-axis diameter (L) in the range of 0.1<L?0.9 ?m as measured by electron microscopy.
    Type: Application
    Filed: January 23, 2015
    Publication date: November 24, 2016
    Inventors: Hideaki NAGAI, Kunimitsu KATAOKA, Junji AKIMOTO, Yoshimasa KUMASHIRO, Tomoyuki SOTOKAWA
  • Publication number: 20160194214
    Abstract: Provided are: an alkali metal titanium oxide having a uniform composition and that is such that there are no residual by-products having a different composition or unreacted starting materials; and a method for producing a titanium oxide and proton exchange body obtained by processing the alkali metal titanium oxide. The method produces an alkali metal titanium oxide by firing the result of impregnating the surface and inside of pores of porous titanium compound particles with an aqueous solution of an alkali metal-containing component. The alkali metal titanium oxide is subjected to proton exchange, and with the proton exchange body of the alkali metal titanium oxide as the starting material, the titanium oxide is produced through a heat processing step.
    Type: Application
    Filed: August 14, 2014
    Publication date: July 7, 2016
    Inventors: Hideaki NAGAI, Junji AKIMOTO, Kunimitsu KATAOKA, Yoshimasa KUMASHIRO, Tomoyuki SOTOKAWA, Nobuharu KOSHIBA
  • Publication number: 20160190574
    Abstract: Provided are an alkali metal titanium oxide and titanium oxide that have a novel form and are industrially advantageous. The alkali metal titanium oxide is obtained by firing the result of impregnating the surface and interior of pores of porous titanium compound particles with an aqueous solution of an alkali metal-containing component, and has the form of secondary particles resulting from the aggregation of primary particles having an anisotropic structure. The titanium oxide is obtained using the alkali metal titanium oxide as a starting material. The secondary particles can further assume a clumped structure, have a suitable size, and are easily handled, and so are industrially advantageous. In particular, the H2Ti12O25 of the present invention is an electrode material that is for a lithium secondary battery, has a high capacity and a superior initial charging/discharging rate and cycling characteristics, and has an extremely high practical value.
    Type: Application
    Filed: August 14, 2014
    Publication date: June 30, 2016
    Inventors: Hideaki NAGAI, Junji AKIMOTO, Kunimitsu KATAOKA, Yoshimasa KUMASHIRO, Tomoyuki SOTOKAWA, Nobuharu KOSHIBA
  • Patent number: 9150424
    Abstract: Disclosed are: a novel lithium titanate; and a method for producing the novel lithium titanate. Specifically disclosed is a compound that has a chemical composition represented by the general formula (1): Li2Ti18O37, or the compound additionally containing copper and/or tin. The compound represented by the general formula (1) is synthesized by causing a lithium compound to react with a compound that has a chemical composition represented by the general formula (2): H2Ti12O25 in a liquid phase so that some of hydrogen ions contained in the compound represented by the general formula (2) are substituted by lithium ions, and then carrying out solid-liquid separation and thermal dehydration.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: October 6, 2015
    Assignee: ISHIHARA SANGYO KAISHA, LTD.
    Inventors: Tokuo Suita, Tomoyuki Sotokawa
  • Patent number: 8724293
    Abstract: Disclosed is a storage device comprising a positive electrode material containing graphite; a negative electrode material containing an oxide of at least one metal element selected from Ti, Zr, V, Cr, Mo, Mn, Fe, Co, Ni, Cu, Zn, Sn, Sb, Bi, W and Ta, which may preferably contains a metal oxide containing at least Ti as a metal element; and an electrolyte solution. This storage device has high capacitance and high discharge voltage, thereby having high energy. Consequently, this storage device can have high energy density, while being excellent in cycle performances and rate performances.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: May 13, 2014
    Assignee: Ishihara Sangyo Kaisha, Ltd.
    Inventors: Masaki Yoshio, Toshihiko Kawamura, Nariaki Moriyama, Masatoshi Honma, Tokuo Suita, Hirofumi Taniguchi, Tomoyuki Sotokawa
  • Patent number: 8652351
    Abstract: This invention provides a titanic acid compound-type electrode active material having a high battery capacity and, at the same time, having excellent cycle characteristics. The titanic acid compound exhibits an X-ray diffraction pattern corresponding to a bronze-type titanium dioxide except for a peak for a (200) plane and having a peak intensity ratio between the (001) plane and the (200) plane, i.e., I(200)/I(001), of not more than 0.2. The titanic acid compound may be produced by heat dehydrating H2Ti3O7 at a temperature in the range of 200 to 330° C., by heat dehydrating H2Ti4O9 at a temperature in the range of 250 to 650° C., or by heat dehydrating H2Ti5O11 at a temperature in the range of 200 to 600° C.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: February 18, 2014
    Assignee: Ishihara Sangyo Kaisha, Ltd.
    Inventors: Tomoyuki Sotokawa, Nariaki Moriyama, Masatoshi Honma, Tokuo Suita
  • Publication number: 20130045422
    Abstract: Disclosed are: a novel lithium titanate; and a method for producing the novel lithium titanate. Specifically disclosed is a compound that has a chemical composition represented by the general formula (1): Li2Ti18O37, or the compound additionally containing copper and/or tin. The compound represented by the general formula (1) is synthesized by causing a lithium compound to react with a compound that has a chemical composition represented by the general formula (2): H2Ti12O25 in a liquid phase so that some of hydrogen ions contained in the compound represented by the general formula (2) are substituted by lithium ions, and then carrying out solid-liquid separation and thermal dehydration.
    Type: Application
    Filed: April 27, 2011
    Publication date: February 21, 2013
    Inventors: Tokuo Suita, Tomoyuki Sotokawa
  • Publication number: 20110073804
    Abstract: This invention provides a titanic acid compound-type electrode active material having a high battery capacity and, at the same time, having excellent cycle characteristics. The titanic acid compound exhibits an X-ray diffraction pattern corresponding to a bronze-type titanium dioxide except for a peak for a (200) plane and having a peak intensity ratio between the (001) plane and the (200) plane, i.e., I(200)/I(001), of not more than 0.2. The titanic acid compound may be produced by heat dehydrating H2Ti3O7 at a temperature in the range of 200 to 330° C., by heat dehydrating H2Ti4O9 at a temperature in the range of 250 to 650° C., or by heat dehydrating H2Ti5O11 at a temperature in the range of 200 to 600° C.
    Type: Application
    Filed: August 27, 2008
    Publication date: March 31, 2011
    Inventors: Tomoyuki Sotokawa, Nariaki Moriyama, Masatoshi Homma, Tokuo Suita
  • Publication number: 20100046143
    Abstract: Disclosed is a storage device comprising a positive electrode material containing graphite; a negative electrode material containing an oxide of at least one metal element selected from Ti, Zr, V, Cr, Mo, Mn, Fe, Co, Ni, Cu, Zn, Sn, Sb, Bi, W and Ta, which may preferably contains a metal oxide containing at least Ti as a metal element; and an electrolyte solution. This storage device has high capacitance and high discharge voltage, thereby having high energy. Consequently, this storage device can have high energy density, while being excellent in cycle performances and rate performances.
    Type: Application
    Filed: October 19, 2007
    Publication date: February 25, 2010
    Inventors: Masaki Yoshio, Toshihiko Kawamura, Nariaki Moriyama, Masatoshi Honma, Tokuo Suita, Hirofumi Taniguchi, Tomoyuki Sotokawa