Patents by Inventor Tongsan D. Xiao

Tongsan D. Xiao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8107223
    Abstract: The disclosure relates to asymmetric supercapacitors containing: a positive electrode comprising a current collector and a first active material selected from a layered double hydroxide of formula [M2+1?xMx3+(OH)2]An?x/n·mH2O where M2+ is at least one divalent metal, M3+ is at least one trivalent metal and A is an anion of charge n?, where x is greater than zero and less than 1, n is 1, 2, 3 or 4 and m is 0 to 10; LiCoO2; LiCoxNiyO2 where x and y are greater than zero and less than 1; LiCoxNiyMn(1?x?y)O2 where x and y are greater than zero and less than 1; CoSx where x is from 1 to 1.5; MoS; Zn; activated carbon and graphite; a negative electrode containing a material selected from a carbonaceous active material, MoO3 and Li1xMoO6?x/2; an aqueous electrolyte solution or a non-aqueous ionic conducting electrolyte solution containing a salt and a salt and a non-aqueous solution; and a separator plate. Alternatively, the electrolyte can be a solid electrolyte.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: January 31, 2012
    Assignee: U.S. Nanocorp, Inc.
    Inventors: Stephen M. Lipka, John R. Miller, Tongsan D. Xiao, Jinxiang Dai
  • Publication number: 20090290287
    Abstract: The disclosure relates to asymmetric supercapacitors containing: a positive electrode comprising a current collector and a first active material selected from a layered double hydroxide of formula [M2+1?xMx3+(OH)2]An?x/n·mH2O where M2+ is at least one divalent metal, M3+ is at least one trivalent metal and A is an anion of charge n?, where x is greater than zero and less than 1, n is 1, 2, 3 or 4 and m is 0 to 10; LiCoO2; LiCoxNiyO2 where x and y are greater than zero and less than 1; LiCoxNiyMn(1?x?y)O2 where x and y are greater than zero and less than 1; CoSx where x is from 1 to 1.5; MoS; Zn; activated carbon and graphite; a negative electrode containing a material selected from a carbonaceous active material, MoO3 and Li1xMoO6?x/2; an aqueous electrolyte solution or a non-aqueous ionic conducting electrolyte solution containing a salt and a salt and a non-aqueous solution; and a separator plate. Alternatively, the electrolyte can be a solid electrolyte.
    Type: Application
    Filed: July 29, 2009
    Publication date: November 26, 2009
    Applicant: NANOCORP, INC.
    Inventors: Stephen M. Lipka, John R. Miller, Tongsan D. Xiao, Jinxiang Dai
  • Patent number: 7576971
    Abstract: Asymmetric supercapacitors comprise: a positive electrode comprising a current collector and a first active material selected from the group consisting of manganese dioxide, silver oxide, iron sulfide, lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron phosphate, and a combination comprising at least one of the foregoing active materials; a negative electrode comprising a carbonaceous active material; an aqueous electrolyte solution selected from the group consisting of aqueous solutions of hydroxides of alkali metals, aqueous solutions of carbonates of alkali metals, aqueous solutions of chlorides of alkali metals, aqueous solutions of sulfates of alkali metals, aqueous solutions of nitrates of alkali metals, and a combination comprising at least one of the foregoing aqueous solutions; and a separator plate. Alternatively, the electrolyte can be a non-aqueous ionic conducting electrolyte or a solid electrolyte.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: August 18, 2009
    Assignee: U.S. Nanocorp, Inc.
    Inventors: Stephen M. Lipka, John R. Miller, Tongsan D. Xiao, Jinxiang Dai
  • Patent number: 7491469
    Abstract: Thin cathodes are presented, For example, a cathode includes a substrate; and a layer of a nanostructured pyrite active material deposited on the substrate, wherein the layer of the nanostructured pyrite has a thickness in the range from about 1 to about 1000 microns. The cathodes find particular utility in thermal batteries.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: February 17, 2009
    Assignees: U.S. Nanocorp, Inc., Sandia Corporation
    Inventors: Ronald A. Guidotti, Hui Ye, Tongsan D. Xiao, David E. Reisner, Daniel H. Doughty
  • Publication number: 20080158778
    Abstract: Asymmetric supercapacitors comprise: a positive electrode comprising a current collector and a first active material selected from the group consisting of manganese dioxide, silver oxide, iron sulfide, lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron phosphate, and a combination comprising at least one of the foregoing active materials; a negative electrode comprising a carbonaceous active material; an aqueous electrolyte solution selected from the group consisting of aqueous solutions of hydroxides of alkali metals, aqueous solutions of carbonates of alkali metals, aqueous solutions of chlorides of alkali metals, aqueous solutions of sulfates of alkali metals, aqueous solutions of nitrates of alkali metals, and a combination comprising at least one of the foregoing aqueous solutions; and a separator plate. Alternatively, the electrolyte can be a non-aqueous ionic conducting electrolyte or a solid electrolyte.
    Type: Application
    Filed: February 27, 2007
    Publication date: July 3, 2008
    Inventors: Stephen M. Lipka, John R. Miller, Tongsan D. Xiao, Jinxiang Dai
  • Patent number: 7320798
    Abstract: A multi-layer coating is particularly useful for the coating of implants such as orthopedic and dental implants, particularly metallic implants. The first layer comprises a dense material insoluble and inert in body fluids. The second layer comprises apatite and a binder. The first layer protects the metallic implants from corrosion, apatite dissolution, and interfacial reaction with apatite and the binder. The binder allows adjustment of the thermal expansion coefficient between the coating and the metallic substrate. This multi-layer coating has both high bond strength to implants and excellent bioactivity with the surrounding body tissue.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: January 22, 2008
    Assignee: Inframat Corporation
    Inventors: Zongtao Zhang, Tongsan D. Xiao
  • Patent number: 7320799
    Abstract: A multi-layer coating is particularly useful for the coating of implants such as orthopedic and dental implants, particularly metallic implants. The multi-layer coating has both high bond strength to implants and excellent bioactivity with the surrounding body tissue. A method of making a coated implant includes depositing a first layer on a metallic substrate, wherein the first layer comprises a material selected from the group consisting of nitride compounds, boride compounds, carbide compounds, and mixtures of two or more of the foregoing materials; forming at least one slurry comprising an apatite and a binder, wherein the apatite has greater than about 90% crystallinity, and wherein the binder is inert in body fluids; depositing the slurry on the first layer to form a green coating; and sintering the green coating to form a second layer.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: January 22, 2008
    Assignee: Inframat Corporation
    Inventors: Zongtao Zhang, Tongsan D. Xiao
  • Patent number: 7199997
    Abstract: An asymmetric supercapacitor has a positive electrode having a current collector an active material selected from the group consisting of manganese dioxide, silver oxide, iron sulfide and mixtures thereof, a negative electrode having a carbonaceous active material carbon and optional current collector, an electrolyte, and a separator plate. In a preferred embodiment at least one of the electrodes has nanostructured/nanofibrous material and in a more preferred embodiment, both electrodes have nanostructured/nanfibrous material. The electrolyte can be liquid or solid although liquid electrolytes are preferred. The asymmetric supercapacitor has improved energy density by electrically coupling an electrode of high faradaic capacity such as one having manganese oxide (MnO2) with an electrode such as carbon that stores charge through charge separation at the electric double-layer. The asymmetric supercapacitor also improves power density by using high surface area nanostructured/nanofibrous electrode materials.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: April 3, 2007
    Assignee: U.S. Nanocorp, Inc.
    Inventors: Stephen M. Lipka, John R. Miller, Tongsan D. Xiao, David E. Reisner
  • Patent number: 7157096
    Abstract: A multi-layer coating is particularly useful for the coating of implants such as orthopedic and dental implants, particularly metallic implants. The first layer comprises a bond coating of a dense material insoluble and inert in body fluids. The second layer comprises apatite and a binder. The first layer protects the metallic implants from corrosion, apatite dissolution, and interfacial reaction with apatite and the binder. The apatite in the second layer is a bioactive agent that can osteobond to tissue. The binder allows adjustment of the thermal expansion coefficient between the coating and the metallic substrate. This multi-layer coating has both high bond strength to implants and excellent bioactivity with the surrounding body tissue.
    Type: Grant
    Filed: October 14, 2002
    Date of Patent: January 2, 2007
    Assignee: Inframat Corporation
    Inventors: Zongtao Zhang, Tongsan D. Xiao
  • Patent number: 6974640
    Abstract: A contiguous duplex microstructured material comprises a nanostructured material having two structural states, for example, a duplex microstructured coating. One state comprises substantially nanostructured features, while the second state substantially comprises microstructured features. A duplex nanostructured coating can be made by thermal spraying a reconstituted nanostructured material onto a substrate under conditions effective to form a coating comprising more than one structural state.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: December 13, 2005
    Assignee: The University of Connecticut
    Inventors: Maurice Gell, Tongsan D. Xiao, Leon Shaw, Eric Jordan, Xiangliang Jiang
  • Patent number: 6926997
    Abstract: Thin electrodes produced by thermal spray techniques are presented, wherein the thermal spray feedstock comprises an active material and a protective barrier coating. In a particularly advantageous feature, the active material feedstock is a metal sulfide, metal selenide, or metal telluride which ordinarily decomposes at thermal spray temperatures or which transforms to a material unsuitable for use as an electrode at thermal spray temperatures. The electrodes find particular utility in thermal batteries.
    Type: Grant
    Filed: November 2, 1999
    Date of Patent: August 9, 2005
    Assignees: Sandia Corporation, U.S. Nanocorp
    Inventors: Ronald A. Guidotti, Hui Ye, Tongsan D. Xiao, David E. Reisner, Daniel H. Doughty
  • Patent number: 6794086
    Abstract: A method for the manufacture of an electrode for an energy storage or conversion device comprises thermally spraying a feedstock mixture comprising an effective quantity of a source of a thermally protective salt and an active material or active material precursor onto a substrate to produce a film of the active material and salt. The film can have a thickness of about 1 to about 1000 microns. In a particularly advantageous feature, the active materials which ordinarily decompose or are unavailable at the high temperatures used during thermal spray processes, such as metal chalcogenides such as pyrite, CoS2, WS2, Ni(OH)2, MnO2, and the like may be thermally sprayed to form an electrode when the feedstock mixture employs an effective amount of a source of the thermally protective salt coating. The active material feedstock may comprise microstructured or nanostructured materials, which after thermal spray results in electrodes having microstructured or nanostructured active materials, respectively.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: September 21, 2004
    Assignees: Sandia Corporation, U.S. Nanocorp, Inc.
    Inventors: Jinxiang Dai, Ronald A. Guidotti, Tongsan D. Xiao, David E. Reisner
  • Patent number: 6723674
    Abstract: A microstructured or nanostructured multi-component ceramic comprises (a) a major ceramic phase comprising a ceramic oxide composite; (b) a ceramic oxide additive; and (c) a rare earth ceramic oxide additive, wherein the total of the additives (b) and (c) comprise from about 0.1 weight percent to less than 50 weight percent based on the total weight the multi-component ceramic composite. In another embodiment, a microstructured or nanostructured multi-component ceramic comprises (a) a major ceramic oxide phase comprising a ceramic oxide composite; and either (b) a ceramic oxide additive or (c) a rare earth ceramic oxide additive, wherein amount of the additive (b) or (c) comprises from about 0.1 weight percent to less than 50 weight percent based on the total weight the multi-component ceramic composite. Such ceramics are useful as bulk materials or as feedstocks for thermal spray.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: April 20, 2004
    Assignee: Inframat Corporation
    Inventors: Donald M. Wang, You Wang, Tongsan D. Xiao
  • Patent number: 6689424
    Abstract: A method for the deposition of solid lubricant coatings onto a substrate, comprising thermally spraying a powder comprising agglomerates of a solid lubricant coated with sulfur. Preferably, the solid lubricant is a sulfide. The coatings find particular utility on rollers used in the manufacture of steel.
    Type: Grant
    Filed: May 27, 2000
    Date of Patent: February 10, 2004
    Assignee: Inframat Corporation
    Inventors: You Wang, Tongsan D. Xiao, Hui Ye
  • Publication number: 20030138695
    Abstract: Thin electrodes produced by thermal spray techniques are presented, wherein the thermal spray feedstock comprises an active material and a protective barrier coating. In a particularly advantageous feature, the active material feedstock is a metal sulfide, metal selenide, or metal telluride which ordinarily decomposes at thermal spray temperatures or which transforms to a material unsuitable for use as an electrode at thermal spray temperatures. The electrodes find particular utility in thermal batteries.
    Type: Application
    Filed: November 2, 1999
    Publication date: July 24, 2003
    Inventors: RONALD A. GUIDOTTI, HUI YE, TONGSAN D. XIAO, DAVID E. REISNER, DANIEL H. DOUGHTY
  • Publication number: 20030108680
    Abstract: A contiguous duplex microstructured material comprises a nanostructured material having two structural states, for example, a duplex microstructured coating. One state comprises substantially nanostructured features, while the second state substantially comprises microstructured features. A duplex nanostructured coating can be made by thermal spraying a reconstituted nanostructured material onto a substrate under conditions effective to form a coating comprising more than one structural state.
    Type: Application
    Filed: July 9, 2002
    Publication date: June 12, 2003
    Inventors: Maurice Gell, Tongsan D. Xiao, Leon Shaw, Eric Jordan, Xiangliang Jiang
  • Publication number: 20030099762
    Abstract: A multi-layer coating is particularly useful for the coating of implants such as orthopedic and dental implants, particularly metallic implants. The first layer comprises a bond coating of a dense material insoluble and inert in body fluids. The second layer comprises apatite and a binder. The first layer protects the metallic implants from corrosion, apatite dissolution, and interfacial reaction with apatite and the binder. The apatite in the second layer is a bioactive agent that can osteobond to tissue. The binder allows adjustment of the thermal expansion coefficient between the coating and the metallic substrate. This multi-layer coating has both high bond strength to implants and excellent bioactivity with the surrounding body tissue.
    Type: Application
    Filed: October 14, 2002
    Publication date: May 29, 2003
    Inventors: Zongtao Zhang, Tongsan D. Xiao
  • Patent number: 6517802
    Abstract: A chemical synthetic route for nanostructured materials that is scalable to large volume production, comprising spray atomization of a reactant solution into a precursor solution to form a nanostructured oxide or hydroxide precipitate. The precipitate is then heat-treated followed by sonication, or sonicated followed by heat treatment. This route yields nanostructured doped and undoped nickel hydroxide, manganese dioxide, and ytrria-stabilized zirconia. Unusual morphological superstructures may be obtained, including well-defined cylinders or nanorods, as well as a novel structure in nickel hydroxide and manganese dioxide, comprising assemblies of nanostructured fibers, assemblies of nanostructured fibers and agglomerates of nanostructured particles, and assemblies of nanostructured fibers and nanostructured particles. These novel structures have high percolation rates and high densities of active sites, rendering them particularly suitable for catalytic applications.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: February 11, 2003
    Assignees: The University of Connecticut, Rutgers, The State University of New Jersey
    Inventors: Tongsan D. Xiao, Peter R. Strutt, Bernard H. Kear, Huimin Chen, Donald M. Wang
  • Publication number: 20030008764
    Abstract: A microstructured or nanostructured multi-component ceramic comprises (a) a major ceramic phase comprising a ceramic oxide composite; (b) a ceramic oxide additive; and (c) a rare earth ceramic oxide additive, wherein the total of the additives (b) and (c) comprise from about 0.1 weight percent to less than 50 weight percent based on the total weight the multi-component ceramic composite. In another embodiment, a microstructured or nanostructured multi-component ceramic comprises (a) a major ceramic oxide phase comprising a ceramic oxide composite; and either (b) a ceramic oxide additive or (c) a rare earth ceramic oxide additive, wherein amount of the additive (b) or (c) comprises from about 0.1 weight percent to less than 50 weight percent based on the total weight the multi-component ceramic composite. Such ceramics are useful as bulk materials or as feedstocks for thermal spray.
    Type: Application
    Filed: September 21, 2001
    Publication date: January 9, 2003
    Inventors: You Wang, Tongsan D. Xiao, Donald M. Wang
  • Publication number: 20020018929
    Abstract: A method for the manufacture of an electrode for an energy storage or conversion device comprises thermally spraying a feedstock mixture comprising an effective quantity of a source of a thermally protective salt and an active material or active material precursor onto a substrate to produce a film of the active material and salt. The film can have a thickness of about 1 to about 1000 microns.
    Type: Application
    Filed: February 28, 2001
    Publication date: February 14, 2002
    Inventors: Jinxiang Dai, Ronald A. Guidotti, Tongsan D. Xiao, David E. Reisner