Patents by Inventor Toon Hendrik Evers

Toon Hendrik Evers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9841421
    Abstract: The invention relates to a sensor device (100) and a method for the detection of magnetic particles (1) in a sample chamber (2) with a contact surface (11). The sensor device (100) comprises a sensor unit (120, 130) for detecting magnetic particles (1) in a target region (TR) and/or in at least one reference region on the contact surface. Moreover, it comprises a magnetic field generator (140) for generating a magnetic field that shall guide magnetic particles to the contact surface. With the help of these components, an “auxiliary parameter” is determined that is related to the magnetic particles (1) and/or their movement but that is independent of binding processes taking place in the target region between magnetic particles and the contact surface. The auxiliary parameter may for example be related to the degree of mismatch between the positions reached by the magnetic particles (1) under the influence of a magnetic field and the target region (TR).
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: December 12, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Wendy Uyen Dittmer, Mikhail Mikhaylovich Ovsyanko, Toon Hendrik Evers, Jeroen Hans Nieuwenhuis, Joannes Baptist Adrianus Dionisius Van Zon
  • Patent number: 9804089
    Abstract: A sensing device (100) detects a target substance (2) in an investigation region (113). The sensing device (100) includes a sensing surface (112) with an investigation region (113) and a reference region (120). The sensing device (100) further includes a reference element (121) located at the reference region (120). The reference element (121) is adapted to shield the reference region (120) from the target substance (2) such that light reflected at the reference region (120) under total internal reflection conditions remains unaffected by the presence or absence of the target substance (2). This allows measuring a property, typically the intensity, of light reflected at the reference region (120) independent of the presence or absence of the target substance (2). This measured property of the reflected light can be used for performing a correction of light reflected at the investigation region (113).
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: October 31, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Dominique Maria Bruls, Toon Hendrik Evers, Johannes Joseph Hubertina Barbara Schleipen
  • Patent number: 9772272
    Abstract: A substance determining apparatus determines a substance within a fluid where particles, which have attached the substance, are bound to a binding surface. A sensing unit is configured to generate a sensing signal being indicative of at least one of i) a distance between the particles bound on the binding surface and the binding surface, and ii) an in-plane position of the particles bound on the binding surface. A binding discrimination unit is configured to discriminate between different kinds of binding of the particles bound on the binding surface depending on the generated sensing signal. The binding discrimination unit may be a unit for determining the part of the sensing signal being caused by specifically bound particles and for determining the substance based on this determined part of the sensing signal.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: September 26, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Toon Hendrik Evers, Johannes Joseph Hubertina Barbara Schleipen, Joannes Baptist Adrianus Dionisius Van Zon, Derk Jan Wilfred Klunder, Josephus Arnoldus Hendricus Maria Kahlman, Ron Martinus Laurentius Van Lieshout, Mikhail Mikhaylovich Ovsyanko, Kim Van Ommering
  • Patent number: 9720003
    Abstract: The present invention relates to a method for measuring Troponin I in a sample comprising the steps of providing a sample, contacting the sample with a monoclonal anti-Troponin I antibody coupled to a magnetic label, contacting the sample with a polyclonal anti-Troponin I antibody coupled to a sensor surface and detecting the magnetic label on the sensor surface. The invention further relates to a device and a cartridge for measuring Troponin I in a sample.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: August 1, 2017
    Assignee: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Wendy Uyen Dittmer, Toon Hendrik Evers, Peggy De Kievit, Ricky Kamps, Joost Lambert Max Vissers, Michael Franciscus Wilhelmus Cornelis Martens, David Walterus Cornelis Dekkers
  • Publication number: 20170120241
    Abstract: The invention relates to a cartridge (10) for processing of a liquid sample, for example for the detection of components in a sample of blood. The cartridge comprises a fluidic system with an intake port (12) leading via an intake capillary channel (13) to a storage chamber (14). Moreover, a feeding capillary channel (15) leads from the storage chamber (14) to a detection chamber (16). The design of the cartridge (10) is such that the intake capillary channel (13) that connects the intake port (12) to the storage chamber (14), has a capillary suction pressure sufficiently high to drive some sample from the intake port to the storage chamber without need of any additional pressure. Furthermore the cartridge a flow control element (18, 20) adapted to be externally controllable such that the sample can be drawn from the storage chamber (14) towards the processing chamber (16) without any active pumping.
    Type: Application
    Filed: May 28, 2015
    Publication date: May 4, 2017
    Inventors: GODEFRIDUS JOHANNES VERHOECKX, TOON HENDRIK EVERS, MARLIEKE JOAN OVERDIJK, MONICA SCHOLTEN, NICOLE HENRICA MARIA SMULDERS, JOOST HUBERT MAAS, BERNARDUS JOZEF MARIA BEERLING
  • Patent number: 9612239
    Abstract: The invention relates to a substance determining apparatus (19) for determining a substance within a fluid. A location event determination unit (34) determines location events indicating that a particle, which may have attached the substance, is located in a sensing region and a property of the location events from the sensing signal generated by sensing the sensing region. A location events selection unit (70) selects a part of the location events having a property in a predefined property range, and a substance determination unit (40) determines the substance within the fluid (3) based on the selected part of the location events. This allows tuning the determination of the substance within the fluid to a desired property range, which can relate to a desired kind of bound particles, thereby reducing the influence of unwanted effects on the determination of the substance and, thus, improving the determination accuracy.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: April 4, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Joannes Baptist Adrianus Dionisius Van Zon, Toon Hendrik Evers, Ron Martinus Laurentius Van Lieshout, Wilhelmina Maria Hardeman, Derk Jan Wilfred Klunder
  • Patent number: 9612236
    Abstract: The present invention is related to a method for detection of a biological target in an affinity assay, the method comprising the steps of providing a biological sample volume containing the biological target, adding a first capturing moiety to the biological sample volume comprising the biological target, wherein the first capturing moiety is adhered to a particle, concentration of the captured biological target into an elution volume that is smaller than the biological sample volume in step a), cleavage of the first capturing moiety or the biological target from the particle and direct or indirect detection and/or quantification of the biological target in a sandwich or competitive affinity assay format, wherein the biological target is associated with at least one capturing moiety, preferably at least two capturing moieties.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: April 4, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Gwenola Sabatte, Menno Willem Jose Prins, Toon Hendrik Evers, Wilhelmina Maria Hardeman, Joukje Garrelina Orsel
  • Patent number: 9588112
    Abstract: The invention relates to a system and a method for the detection of target components (102) in a sample with the help of indicator particles (101) distributed in said sample. The distance (d) between indicator particles (101) and a contact surface (112) is determined after the target components could bind to the contact surface and/or the indicator particles. Thus it is possible to detect how many target components (102) are bound without a need for a binding between indicator particles (101) and contact surface (112). Optionally the indicator particles (101) can be affected by a modulated force, e.g. via an electromagnet (141). The determination of the distance (d) between indicator particles (101) and contact surface (112) may for example be achieved by frustrated total internal reflection, measurement of magnetic fields, or FRET.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: March 7, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Toon Hendrik Evers
  • Patent number: 9557287
    Abstract: The invention relates to a cartridge (790) for processing a fluid comprising (i)a pre-treatment fluidic system with an inlet (710) via which the fluid can be supplied and at least one primary processing chamber (712) in which said fluid can be processed; (ii) a post-treatment fluidic system with at least one secondary processing chamber (755) in which fluid can be processed; (iii) a fluid-treatment element (701) that is permeable to at least a part oft he fluid and that couples the post-treatment fluidic system to the pre-treatment fluidic system. The fluid-treatment element may particularly be a filter material (701) integrated into at least one foil (702, 703, 704).
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: January 31, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Jacobus Hermanus Maria Neijzen, Toon Hendrik Evers
  • Patent number: 9339813
    Abstract: The invention relates to a substance determining apparatus for determining a substance within a fluid. Particles attach the substance and bind to a binding surface (30), wherein a sensing signal is generated depending on the bound particles. Binding events indicating a binding of a particle on the binding surface (30) are determined from the generated sensing signal, and the substance within the fluid is determined based on the determined binding events. During a procedure of determining a substance within a fluid, particles may bind to the binding surface and may leave the binding surface. Therefore, during this procedure a number of binding events can be determined being much larger than the number of bound particles. The determination of the substance within the fluid can therefore be based on a very large amount of data, thereby increasing the accuracy of determining the substance within the fluid.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: May 17, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Josephus Arnoldus Henricus Maria Kahlman, Joannes Baptist Adrianus Dionisius Van Zon, Johannes Joseph Hubertina Barbara Schleipen, Derk Jan Wilfred Klunder, Toon Hendrik Evers, Ron Martinus Laurentius Van Lieshout
  • Publication number: 20160123965
    Abstract: The present invention relates to a method for preventing aggregation of detection particles in a test for detecting a multi-epitope target analyte comprising two or more similar or identical epitopes in a sample and/or for determining the concentration of the multi-epitope target analyte in a sample wherein the method comprises the step of applying a first capture entity which can specifically bind to at least one epitope on the multi-epitope analyte, characterized in that the first capture entity blocks the at least one epitope from binding to a detection particle. The invention further relates to a method wherein the detection of the multi-epitope target analyte comprises the use of a second capture entity, which can specifically bind to the same or similar epitope of the multi-epitope target analyte as the first capture entity.
    Type: Application
    Filed: June 5, 2014
    Publication date: May 5, 2016
    Inventors: TOON HENDRIK EVERS, MENNO WILLEM JOSE PRINS, JEROEN HANS NIEUWENHUIS
  • Patent number: 9261501
    Abstract: A biosensor system for the detection of particles includes a biosensor cartridge having a sensor surface. A biosensor magnet assembly is disposed on one side of the cartridge for generating a magnetic field effective at the cartridge and the sensor surface. The biosensor magnet assembly includes at least two magnetic sub-units separated by a gap. A first optical detection system detects the particles arranged at the same side of the cartridge as the magnet assembly. The magnet assembly and the first optical sensor are disposed such that the optical detection is accomplished through the gap of the magnet assembly.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: February 16, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Johannes Joseph Hubertina Barbara Schleipen, Joannes Baptist Andrianus Dionisius Van Zon, Derk Jan Wilfred Klunder, Toon Hendrik Evers, Josephus Arnoldus Henricus Maria Kahlman, Ron Martinus Laurentius Van Lieshout, Mikhail Mikhaylovich Ovsyanko
  • Publication number: 20160025958
    Abstract: The invention relates to a horseshoe magnet (110) that can cost -effectively be manufactured. In one embodiment, the magnet (110) comprises a yoke (120) and at least one pole tip (130) that is attached to an arm (122) of the yoke (120) but that is not integral with said arm. Optionally, the yoke (120) and the pole tip (130) are made from different materials, particularly from iron and cobalt-iron, respectively.
    Type: Application
    Filed: March 5, 2014
    Publication date: January 28, 2016
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Jorrit Ernst DE VRIES, Toon Hendrik EVERS, Joannes Baptist Adrianus D. VAN ZON, Hendrikus Antonis Cornelus COMPEN
  • Publication number: 20150323523
    Abstract: The invention relates to a method and a processing device for the processing of a fluid containing interfering particles, for example for the processing of blood comprising red blood cells (C). Magnetic particles (MP) are added to the fluid and distributed with the help of a magnetic field in a blocking zone (BZ) such that migration of the interfering particles (C) through the blocking zone (BZ) is impeded, preferably completely prevented. The blocking zone (BZ) hence acts as a filter element by which interfering particles (C) can for example be kept away from a detection region (117) at the surface of the processing chamber.
    Type: Application
    Filed: June 20, 2013
    Publication date: November 12, 2015
    Inventors: TOON HENDRIK EVERS, RON MARTINUS LAURENTIUS VAN LIESHOUT, JOANNES BAPTIST ADRIANUS DIONISIUS VAN ZON
  • Publication number: 20150314283
    Abstract: An embodiment of the invention relates to a fluidic system (200) in which a first channel (210) and a second channel (230) are separated by a fluidic stop (220), for example a region with a hydrophobic coating and/or a structure (220) with non-capillary internal dimensions. Moreover, it comprises a flexible element (240) that is deformable to enable a flow of a medium across the fluidic stop.
    Type: Application
    Filed: November 18, 2013
    Publication date: November 5, 2015
    Inventors: GODEFRIDUS JOHANNES VERHOECKX, NICOLE HENRICA MARIA SMULDERS, TOON HENDRIK EVERS, MONICA SCHOLTEN, MENNO WILLEM JOSE PRINS
  • Patent number: 9075052
    Abstract: A biosensor system for the detection of particles includes a biosensor cartridge having a sensor surface. A biosensor magnet assembly is disposed on one side of the cartridge for generating a magnetic field effective at the cartridge and the sensor surface. The biosensor magnet assembly includes at least two magnetic sub-units separated by a gap. A first optical detection system detects the particles arranged at the same side of the cartridge as the magnet assembly. The magnet assembly and the first optical sensor are disposed such that the optical detection is accomplished through the gap of the magnet assembly.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: July 7, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Johannes Joseph Hubertina Barbara Schleipen, Joannes Baptist Adrianus Dionisius Van Zon, Derk Jan Wilfred Klunder, Toon Hendrik Evers, Josephus Arnoldus Henricus Maria Kahlman, Ron Martinus Laurentius Van Lieshout, Mikhail Mikhaylovich Ovsyanko
  • Publication number: 20150187479
    Abstract: The invention relates to an apparatus (100) and a method for the processing of magnetic particles (MP) provided in a processing chamber (114) with a binding region (116) to which said magnetic particles (MP) can (specifically) bind. Removal of unbound magnetic particles (MP) from the binding region (116) is achieved by first separating them from the binding region (116) by gravitational forces and then moving them further away by magnetic forces. Gravitational forces can for example be generated by tilting the binding region with a tilting unit (156). The prior separation by gravitational forces prevents that unbound magnetic particles (MP) are captured in a cluster with bound magnetic particles.
    Type: Application
    Filed: June 20, 2013
    Publication date: July 2, 2015
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Ron Lartinus Laurentius Van Lieshout, Joannes Baptist Adrianus Dionisius Van Zon, Toon Hendrik Evers
  • Publication number: 20150177239
    Abstract: The present invention relates to a device for detecting a target molecule within a sample comprising a sample container for the measurement of the target molecule within a sample, a first particle, wherein said first particle is functionalized with a first binding molecule capable of specifically binding to said target molecule, and a surface structure comprising a second binding molecule, wherein said surface structure covers a flat sensor or is present on a second particle, wherein said first particle is capable of binding said second binding molecule of the surface structure directly or indirectly; wherein said first and/or second binding molecule is indirectly attached to the particle surface of said first and/or second particle and/or the flat sensor surface via a long and rigid linker molecule; wherein the length and the consistency of said linker molecule is selected such as to result in an average extension length of said linker of more than 60 nm; and wherein the number of particle clusters or of bou
    Type: Application
    Filed: November 13, 2012
    Publication date: June 25, 2015
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Toon Hendrik Evers, Maatje Koets
  • Patent number: 9023651
    Abstract: The invention relates to a method and a device (100) for determining the amount of a target component (2) in a sample, wherein magnetic particles (2) can bind to a contact surface (4) with kinetics that depend on the sample-amount of the target component. The method comprises at least two washing steps during which magnetic particles (2) are magnetically moved away from the contact surface (4) and corresponding measurements of the remaining amount of magnetic particles (2) at the contact surface (4). The amount of target component in the sample is estimated from at least one of such measurement results. The measurement allows to determine also high concentrations of target component for which the sensor surface (4) is saturated in a steady-state.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: May 5, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Toon Hendrik Evers, Wendy Uyen Dittmer
  • Publication number: 20150060353
    Abstract: The invention relates to a filter unit (600), a method for manufacturing such a filter unit, and a cartridge (690) comprising such a filter unit. The filter unit (600) is characterized in that it comprises a filter material (601) which is integrated into the aperture of at least one foil (602, 603, 604). In a preferred embodiment, the filter material (601) may be located in the aperture of an intermediate foil (604) which is embedded between a top foil (602) and a bottom foil (603). Such a filter unit (600) can readily be produced in cost-effective processes like roll-to-roll manufacturing technologies.
    Type: Application
    Filed: January 23, 2013
    Publication date: March 5, 2015
    Inventors: Jacobus Hermanus Maria Neijzen, Toon Hendrik Evers