Patents by Inventor Toru Sumi

Toru Sumi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11834733
    Abstract: Recrystallization of an aluminium alloy wire material is suppressed while a heat resistance of the same is improved. In a wire material made of an aluminium alloy, an aluminium alloy wire material is provided, the aluminium alloy containing Zr of 0.2 to 1.0 mass %, Co of 0.1 to 1.0 mass % and remainders that are aluminium and unavoidable impurities, and the aluminium alloy wire material having a tensile strength at a room temperature that is equal to or higher than 170 MPa, an elongation that is equal to or higher than 10%, and a stress at time of tensile deformation at a strain speed of 10?5/sec under a temperature condition of 250° C. that is equal to or higher than 40 MPa.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: December 5, 2023
    Assignee: Proterial, Ltd.
    Inventors: Kazuya Nishi, Toru Sumi, Shohei Hata
  • Patent number: 11545277
    Abstract: Bendability of a copper alloy wire is improved without decrease in an electrical conductivity of the copper alloy wire made of copper alloy containing zirconium. A cable includes: a two-core stranded wire formed by intertwining two electrical wires made of a conductor and an insulating layer covering the conductor; a filler formed around the two-core stranded wire; and a sheath formed around the filler and the electrical wire. The conductor is a copper alloy wire in which a precipitate containing the zirconium disperses, and has a crystal gain diameter that is equal to or smaller than 1 ?m, an electrical conductivity that is equal to or higher than 87% IACS, and a tensile stress that is equal to or larger than 545 MPa.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: January 3, 2023
    Assignee: Hitachi Metals, Ltd.
    Inventors: Kazuhisa Takahashi, Shohei Hata, Hiromitsu Kuroda, Toru Sumi, Kazuya Nishi, Keisuke Fujito, Takayuki Tuji
  • Publication number: 20220316032
    Abstract: Recrystallization of an aluminium alloy wire material is suppressed while a heat resistance of the same is improved. In a wire material made of an aluminium alloy, an aluminium alloy wire material is provided, the aluminium alloy containing Zr of 0.2 to 1.0 mass %, Co of 0.1 to 1.0 mass % and remainders that are aluminium and unavoidable impurities, and the aluminium alloy wire material having a tensile strength at a room temperature that is equal to or higher than 170 MPa, an elongation that is equal to or higher than 10%, and a stress at time of tensile deformation at a strain speed of 10?5/sec under a temperature condition of 250° C. that is equal to or higher than 40 MPa.
    Type: Application
    Filed: March 28, 2022
    Publication date: October 6, 2022
    Inventors: Kazuya NISHI, Toru SUMI, Shohei HATA
  • Patent number: 11355258
    Abstract: A wire rod made of an aluminum alloy. The aluminum alloy includes Al crystal grains, an Al—Zr compound, and an Al—Co—Fe or Al—Ni—Fe compound. The aluminum alloy includes high-angle tilt crystal grain boundaries, each of which has a difference between crystal orientations in both its sides of 15 degrees or more, and low-angle tilt crystal grain boundaries, each of which has a difference between crystal orientations in both its sides of 2 degrees or more and less than 15 degrees. An average grain diameter of ones of the Al crystal grains surrounded by the high-angle boundaries is 12 ?m or more. An average grain diameter of the ones of the Al crystal grains surrounded by the high-angle boundaries, ones of the Al crystal grains surrounded by the high-angle boundaries and the low-angle boundaries, and ones of the Al crystal grains surrounded by the low-angle boundaries, is 10 ?m or less.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: June 7, 2022
    Assignee: HITACHI METALS, LTD.
    Inventors: Toru Sumi, Kazuya Nishi, Shohei Hata, Takashi Hayasaka, Takeshi Usami
  • Patent number: 11053569
    Abstract: An alloying-element additive for adding an alloy element to a copper melt formed by melting a base material including a copper in manufacturing a copper alloy. The alloying-element additive includes a wire-shaped or plate-shaped core including an alloy element, and an outer layer material including a copper and covering the core. A weight ratio of the copper in the outer layer material and the alloy element in the core is in a range of weight ratio where the alloying-element additive has a liquid phase in a temperature range of not more than a melting point of the copper in a copper-alloy element phase diagram.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: July 6, 2021
    Assignee: HITACHI METALS, LTD.
    Inventors: Keisuke Fujito, Takashi Hayasaka, Takeshi Usami, Toru Sumi
  • Patent number: 10920306
    Abstract: An aluminum alloy wire rod has a chemical composition consisting of 0.1 to 1.0 mass % of Co, 0.2 to 0.5 mass % of Zr, 0.02 to 0.09 mass % of Fe, 0.02 to 0.09 mass % of Si, 0 to 0.2 mass % of Mg, 0 to 0.10 mass % of Ti, 0 to 0.03 mass % of B, 0 to 1.00 mass % of Cu, 0 to 0.50 mass % of Ag, 0 to 0.50 mass % of Au, 0 to 1.00 mass % of Mn, 0 to 1.00 mass % of Cr, 0 to 0.50 mass % of Hf, 0 to 0.50 mass % of V, 0 to 0.50 mass % of Sc, 0 to 0.50 mass % of Ni, the balance being Al and inevitable impurities, and a metal structure including Al crystal grains, an Al—Co—Fe compound and an Al—Zr compound. The Al crystal grains having a crystal grain diameter of 10 ?m or less have an area ratio of 90% or more. The wire rod has a tensile strength of 150 MPa or more, an electrical conductivity of 55% IACS or more and when heated at 200 deg C. for 10 years, a strength of 90% or more of its initial state strength.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: February 16, 2021
    Assignee: HITACHI METALS, LTD.
    Inventors: Toru Sumi, Kazuya Nishi, Shohei Hata, Takashi Hayasaka, Takeshi Usami
  • Publication number: 20210005342
    Abstract: A wire rod made of an aluminum alloy. The aluminum alloy includes Al crystal grains, an Al—Zr compound, and an Al—Co—Fe or Al—Ni—Fe compound. The aluminum alloy includes high-angle tilt crystal grain boundaries, each of which has a difference between crystal orientations in both its sides of 15 degrees or more, and low-angle tilt crystal grain boundaries, each of which has a difference between crystal orientations in both its sides of 2 degrees or more and less than 15 degrees. An average grain diameter of ones of the Al crystal grains surrounded by the high-angle boundaries is 12 ?m or more. An average grain diameter of the ones of the Al crystal grains surrounded by the high-angle boundaries, ones of the Al crystal grains surrounded by the high-angle boundaries and the low-angle boundaries, and ones of the Al crystal grains surrounded by the low-angle boundaries, is 10 ?m or less.
    Type: Application
    Filed: November 12, 2019
    Publication date: January 7, 2021
    Inventors: Toru SUMI, Kazuya Nishi, Shohei Hata, Takashi Hayasaka, Takeshi Usami
  • Patent number: 10720258
    Abstract: A method for manufacturing a conductive wire includes conducting a continuous casting of a conductive alloy material at a casting rate of not less than 40 mm/min and not more than 200 mm/min to form a conductive wire with a primary diameter, the conductive alloy material containing not more than 1.0 mass % of an added metal element, reducing a diameter of the conductive wire with the primary diameter to form a conductive wire with a secondary diameter, heat treating the conductive wire with the secondary diameter so that tensile strength thereof is reduced to not less than 90% and less than 100% of tensile strength before the heat treating, and reducing a diameter of the conductive wire with the secondary diameter and the reduced tensile strength to generate a logarithmic strain of 7.8 to 12.0 therein to form a conductive wire with a tertiary diameter.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: July 21, 2020
    Assignee: HITACHI METALS, LTD.
    Inventors: Seigi Aoyama, Toru Sumi, Takashi Hayasaka, Ryohei Okada, Detian Huang, Tamotsu Sakurai, Satoshi Yajima, Minoru Takatsuto, Hiroshi Bando
  • Publication number: 20200168355
    Abstract: A method for manufacturing a conductive wire includes conducting a continuous casting of a conductive alloy material at a casting rate of not less than 40 mm/min and not more than 200 mm/min to form a conductive wire with a primary diameter, the conductive alloy material containing not more than 1.0 mass % of an added metal element, reducing a diameter of the conductive wire with the primary diameter to form a conductive wire with a secondary diameter, heat treating the conductive wire with the secondary diameter so that tensile strength thereof is reduced to not less than 90% and less than 100% of tensile strength before the heat treating, and reducing a diameter of the conductive wire with the secondary diameter and the reduced tensile strength to generate a logarithmic strain of 7.8 to 12.0 therein to form a conductive wire with a tertiary diameter.
    Type: Application
    Filed: January 29, 2020
    Publication date: May 28, 2020
    Inventors: Seigi AOYAMA, Toru SUMI, Takashi HAYASAKA, Ryohei OKADA, Detian HUANG, Tamotsu SAKURAI, Satoshi YAJIMA, Minoru TAKATSUTO, Hiroshi BANDO
  • Publication number: 20200075193
    Abstract: Bendability of a copper alloy wire is improved without decrease in an electrical conductivity of the copper alloy wire made of copper alloy containing zirconium. A cable includes: a two-core stranded wire formed by intertwining two electrical wires made of a conductor and an insulating layer covering the conductor; a filler formed around the two-core stranded wire; and a sheath formed around the filler and the electrical wire. The conductor is a copper alloy wire in which a precipitate containing the zirconium disperses, and has a crystal gain diameter that is equal to or smaller than 1 ?m, an electrical conductivity that is equal to or higher than 87% IACS, and a tensile stress that is equal to or larger than 545 MPa.
    Type: Application
    Filed: August 12, 2019
    Publication date: March 5, 2020
    Inventors: Kazuhisa TAKAHASHI, Shohei HATA, Hiromitsu KURODA, Toru SUMI, Kazuya NISHI, Keisuke FUJITO, Takayuki TUJI
  • Publication number: 20190345594
    Abstract: An aluminum alloy wire rod has a chemical composition consisting of 0.1 to 1.0 mass % of Co, 0.2 to 0.5 mass % of Zr, 0.02 to 0.09 mass % of Fe, 0.02 to 0.09 mass % of Si, 0 to 0.2 mass % of Mg, 0 to 0.10 mass % of Ti, 0 to 0.03 mass % of B, 0 to 1.00 mass % of Cu, 0 to 0.50 mass % of Ag, 0 to 0.50 mass % of Au, 0 to 1.00 mass % of Mn, 0 to 1.00 mass % of Cr, 0 to 0.50 mass % of Hf, 0 to 0.50 mass % of V, 0 to 0.50 mass % of Sc, 0 to 0.50 mass % of Ni, the balance being Al and inevitable impurities, and a metal structure including Al crystal grains, an Al—Co—Fe compound and an Al-Zr compound. The Al crystal grains having a crystal grain diameter of 10 ?m or less have an area ratio of 90% or more. The wire rod has a tensile strength of 150 MPa or more, an electrical conductivity of 55% IACS or more and when heated at 200 deg C. for 10 years, a strength of 90% or more of its initial state strength.
    Type: Application
    Filed: November 15, 2018
    Publication date: November 14, 2019
    Applicant: HITACHI METALS, LTD.
    Inventors: Toru Sumi, Kazuya Nishi, Shohei Hata, Takashi Hayasaka, Takeshi Usami
  • Patent number: 10192649
    Abstract: It is an objective of the invention to provide an Al alloy conductor exhibiting mechanical properties and heat resistance that are balanced at a higher level than conventional Al alloy conductors while having an electrical conductivity comparable to that of any conventional Al-based material. There is provided an Al alloy conductor formed of an Al alloy. The Al alloy has a chemical composition including Co of 0.1 mass % or more and 1 mass % or less, at least one of Sc of 0.1 mass % or more and 0.5 mass % or less and Zr of 0.2 mass % or more and 0.5 mass % or less, and the balance made up of Al and inevitable impurities. The Al alloy conductor has a matrix containing fine particles of a compound of at least one of the Sc and the Zr with the Al. The fine particles are dispersedly precipitated in the matrix.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: January 29, 2019
    Assignee: Hitachi Metals, Ltd.
    Inventors: Kazuya Nishi, Toru Sumi, Shohei Hata
  • Publication number: 20180254118
    Abstract: It is an objective of the invention to provide an Al alloy conductor exhibiting mechanical properties and heat resistance that are balanced at a higher level than conventional Al alloy conductors while having an electrical conductivity comparable to that of any conventional Al-based material. There is provided an Al alloy conductor formed of an Al alloy. The Al alloy has a chemical composition including Co of 0.1 mass % or more and 1 mass % or less, at least one of Sc of 0.1 mass % or more and 0.5 mass % or less and Zr of 0.2 mass % or more and 0.5 mass % or less, and the balance made up of Al and inevitable impurities. The Al alloy conductor has a matrix containing fine particles of a compound of at least one of the Sc and the Zr with the Al. The fine particles are dispersedly precipitated in the matrix.
    Type: Application
    Filed: March 1, 2018
    Publication date: September 6, 2018
    Applicant: HITACHI METALS, LTD.
    Inventors: Kazuya NISHI, Toru SUMI, Shohei HATA
  • Patent number: 10030287
    Abstract: A soft dilute copper alloy material includes 2 mass ppm to 12 mass ppm of sulfur, more than 2 mass ppm and not more than 30 mass ppm of oxygen, 4 mass ppm to 55 mass ppm of Ti, and a balance including copper. An average crystal grain size is not more than 20 ?m in a surface layer up to a depth of 50 ?m from a surface. The average crystal grain size in the surface layer is less than the average crystal grain size in an inner portion located more interiorly than the surface layer.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: July 24, 2018
    Assignee: HITACHI METALS, LTD.
    Inventors: Seigi Aoyama, Toru Sumi, Hiromitsu Kuroda, Hideyuki Sagawa
  • Publication number: 20180197652
    Abstract: A method for manufacturing a conductive wire includes conducting a continuous casting of a conductive alloy material at a casting rate of not less than 40 mm/min and not more than 200 mm/min to form a conductive wire with a primary diameter, the conductive alloy material containing not more than 1.0 mass % of an added metal element, reducing a diameter of the conductive wire with the primary diameter to form a conductive wire with a secondary diameter, heat treating the conductive wire with the secondary diameter so that tensile strength thereof is reduced to not less than 90% and less than 100% of tensile strength before the heat treating, and reducing a diameter of the conductive wire with the secondary diameter and the reduced tensile strength to generate a logarithmic strain of 7.8 to 12.0 therein to form a conductive wire with a tertiary diameter.
    Type: Application
    Filed: October 3, 2017
    Publication date: July 12, 2018
    Inventors: Seigi AOYAMA, Toru SUMI, Takashi HAYASAKA, Ryohei OKADA, Detian HUANG, Tamotsu SAKURAI, Satoshi YAJIMA, Minoru TAKATSUTO, Hiroshi BANDO
  • Patent number: 9884467
    Abstract: A copper-based material includes a base comprising copper and a surface treatment layer disposed on a surface of the base, the surface treatment layer including an amorphous layer containing a metal element that has a greater affinity for oxygen than for copper, oxygen, and, optionally, copper diffused from the base.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: February 6, 2018
    Assignee: HITACHI CABLE, LTD.
    Inventors: Seigi Aoyama, Hideyuki Sagawa, Toru Sumi, Keisuke Fujito, Hiromitsu Kuroda
  • Patent number: 9809872
    Abstract: A dilute copper alloy material includes, based on a total mass of the dilute copper alloy material, 2 to 12 mass ppm of sulfur, 2 to 30 mass ppm of oxygen, 4 to 55 mass ppm of titanium, and a balance of pure copper and inevitable impurity. A part of the sulfur and the titanium forms a compound or an aggregate of TiO, TiO2, TiS or Ti—O—S, and an other part of the sulfur and the titanium forms a solid solution. TiO, TiO2, TiS and Ti—O—S distributed in a crystal grain of the dilute copper alloy material are not more than 200 nm, not more than 1000 nm, not more than 200 nm and not more than 300 nm, respectively, in particle size thereof, and not less than 90% of particles distributed in a crystal grain of the dilute copper alloy material are 500 nm or less in particle size.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: November 7, 2017
    Assignee: HITACHI METALS, LTD.
    Inventors: Seigi Aoyama, Toru Sumi, Shuji Sakai, Takahiro Sato, Hidenori Abe
  • Patent number: 9805836
    Abstract: A dilute copper alloy material used in an environment with presence of hydrogen includes pure copper including an inevitable impurity, more than 2 mass ppm of oxygen, and an additive element selected from the group consisting of Mg, Zr, Nb, Ca, V, Fe, Al, Si, Ni, Mn, Ti and Cr, the additive element being capable of forming an oxide in combination with the oxygen. A method of manufacturing a dilute copper alloy member excellent in characteristics of resistance to hydrogen embrittlement includes melting the dilute copper alloy material by SCR continuous casting and rolling at a copper melting temperature of not less than 1100° C. and not more than 1320° C. to make molten metal, forming a cast bar from the molten metal, and forming the dilute copper alloy member by hot-rolling the cast bar.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: October 31, 2017
    Assignee: HITACHI METALS, LTD.
    Inventors: Hiromitsu Kuroda, Toru Sumi, Hideyuki Sagawa, Seigi Aoyama
  • Patent number: 9734937
    Abstract: Provided are a soft dilute-copper alloy wire and soft dilute-copper alloy twisted wire which have high electrical conductivity and high bending life and can limit disconnection during use compared with oxygen-free copper wire, and also provided are an insulated wire, coaxial cable, and composite cable using the soft dilute-copper alloy wire and soft dilute-copper alloy twisted wire. The soft dilute-copper alloy wire is subjected to annealing treatment by elongation processing of soft dilute-copper alloy material comprising copper and an additive element selected from the group consisting of Ti, Mg, Zr, Nb, Ca, V, Ni, Hf, Fe, Mn and Cr, with inevitable impurities as the balance, wherein the soft dilute-copper alloy wire has an average grain size that is 20 ?m or less in a surface layer having a depth of 50 ?m from the surface, and an elongation value that is at least 1% higher than the average elongation value of oxygen-free copper wire that has been subjected to the aforementioned annealing treatment.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: August 15, 2017
    Assignee: HITACHI METALS, LTD.
    Inventors: Seigi Aoyama, Toru Sumi, Hiromitsu Kuroda, Hideyuki Sagawa
  • Patent number: 9564255
    Abstract: A high-speed transmission cable conductor includes a core material includes mainly copper, and a surface treated layer formed around a surface of the core material. The surface treated layer includes an amorphous layer including a metal element having a higher affinity for oxygen than the copper, and oxygen.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: February 7, 2017
    Assignee: HITACHI METALS, LTD.
    Inventors: Hideyuki Sagawa, Seigi Aoyama, Toru Sumi, Keisuke Fujito, Detian Huang