Patents by Inventor Toshihiko Kariya

Toshihiko Kariya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10338771
    Abstract: Provided is a control device for an injection molding machine, capable of reducing the load on a user when re-displaying a previously displayed screen. The control device (20) for the injection molding machine (1) controls the display of display images on a display unit (29). This control device (20) divides the display unit (29) into a first display area (31) and a second display area (32) and, if an instruction to scroll in the vertical direction is received when a first display image (P1) is displayed in the first display area (31) and a second display image (P2) is displayed in the second display area (32), synchronously scrolls the first display image (P1) and the second display image (P2) whilst maintaining the relative positions of the first display image (P1) and the second display image (P2).
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: July 2, 2019
    Assignee: U-MHI PLATECH CO., LTD.
    Inventors: Yasuo Okochi, Takashi Takii, Toshihiko Kariya
  • Publication number: 20190160721
    Abstract: Provided is a half nut opening/closing device that makes it possible to easily secure engagement between a tie rod and a half nut even if the tie rod to be engaged is bent. The half nut opening/closing device according to the present invention includes a half nut including a half nut piece and a half nut piece that are moved between a closed position and an open position and engage with a tie rod at the closed position, and an alignment roller that is provided on one or both of the half nut piece and the half nut piece, and is configured to convert moving force, of that the half nut piece and the half nut piece move to the closed position, into upward force in a vertical direction to lift and align the tie rod.
    Type: Application
    Filed: September 26, 2017
    Publication date: May 30, 2019
    Inventors: Hiroaki KYUNO, Kazunori KUGA, Isao HASHIMOTO, Toshihiko KARIYA, Naoki KATO
  • Publication number: 20180147764
    Abstract: Provided is a mold opening/closing device that can prevent a ball screw shaft from reaching a risky speed while using a ball screw having a cantilever supporting structure. A mold clamping device according to the present invention is provided with: a ball screw having a ball screw shaft and a ball screw nut that meshes with the ball screw shaft; and a motor that drives the ball screw. One end of the ball screw shaft is supported by a fixation plate or a movable plate so as to be rotatable or non-rotatable, while being restricted in movement in an axial direction and thereby serving as a fixed end, and the other end thereof serves as a free end. Further, the mold clamping device is characterized in that a distance between the ball screw nut and the fixed end is shorter than a distance between the fixed plate and the movable plate.
    Type: Application
    Filed: May 9, 2016
    Publication date: May 31, 2018
    Inventors: Shinichi TAKAHASHI, Naoki KATO, Toshihiko KARIYA
  • Publication number: 20180022003
    Abstract: Provided is an injection molding method in which a constricting section is provided at a boundary between a first stage and a second stage of a screw. When a mixture of a molten resin and reinforcing fibers passes through the constricting section, compression force higher than compression force on an upstream side of the constricting section is applied to the mixture. A supply section on a downstream side of the constricting section has a shaft diameter smaller than an outer diameter of the constricting section. Therefore, the vicinity of the supply section becomes a reduced-pressure region with respect to the mixture having passed through the constricting section, and the mixture is accordingly expanded. As a result, spring-back occurs on the reinforcing fibers and a Barus effect occurs on the molten resin, thereby making it possible to produce a state that is advantageous to open the fiber bundle.
    Type: Application
    Filed: January 16, 2015
    Publication date: January 25, 2018
    Inventors: Munehiro NOBUTA, Naoki TODA, Toshihiko KARIYA, Takeshi YAMAGUCHI, Kiyoshi KINOSHITA
  • Publication number: 20170355119
    Abstract: Provided is a screw that is for use in an injection molding machine and that makes it possible to benefit from the kneading effect of a multi-start screw while minimizing the received friction resistance. The screw for an injection molding machine is provided with a first stage 20 on the upstream side and a second stage 30 on the downstream side. The screw for an injection molding machine is characterized in that: the first stage 20 is provided with a compression section 22 comprising a main scraper 25 and an auxiliary scraper 26 having a smaller outer diameter than the main scraper 25; and the second stage 30 is provided with a multi-start screw section 31, said multi-start screw section being provided on the upstream side and comprising a plurality of scrapers, and a fin kneading section 32 provided downstream from the multi-start screw section.
    Type: Application
    Filed: January 15, 2015
    Publication date: December 14, 2017
    Inventors: Munehiro NOBUTA, Naoki TODA, Toshihiko KARIYA, Takeshi YAMAGUCHI, Kiyoshi KINOSHITA
  • Patent number: 9821498
    Abstract: In an injection molding method, using a heating cylinder having on the front end thereof a discharge nozzle, a single axis screw is rotatable inside the heating cylinder, a fiber-supplying device fills reinforcing fiber into the heating cylinder, and injection molding is performed while supplying the reinforcing fiber and the resin starting material separately and supplying the reinforcing fiber on the front side of the resin starting material. The method includes a plasticization process for obtaining a specified amount of a kneaded product by retracting the screw while rotating in the normal direction to melt the resin starting material and knead reinforcing fiber into the melted resin starting material, and an injection process for discharging the kneaded product from the discharge nozzle by advancing the screw. Reinforcing fiber is supplied into the heating cylinder in the injection process.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: November 21, 2017
    Assignees: U-MHI PLATECH CO., LTD., MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Ryoji Okabe, Toshihiko Kariya, Naoki Toda, Munehiro Nobuta
  • Publication number: 20170312954
    Abstract: Provided is an injection molding method for resin that contains reinforcing fiber, the method being capable of easily eliminating uneven distribution of added components. The injection molding method is provided with: a plasticizing step for supplying resin pellets P and added components to a cylinder equipped with a screw 10, which has a rotating axis as the center is capable of rotating normally and in reverse, and generating molten resin by rotating the screw 10 in the normal direction; and an injecting step for injecting the molten resin M comprising the added components into a cavity. In the plasticizing step, a reverse rotation operation for reversing the rotation of the screw 10 is performed or a screw-stopping operation of stopping the normal rotation of the screw 10 is performed with a prescribed timing and for a prescribed period.
    Type: Application
    Filed: June 25, 2015
    Publication date: November 2, 2017
    Inventors: Munehiro NOBUTA, Naoki TODA, Toshihiko KARIYA, Takeshi YAMAGUCHI, Kiyoshi KINOSHITA
  • Patent number: 9789639
    Abstract: A mold-clamping device includes a fixed mold plate including a fixed mold; a movable mold plate including a movable mold; a hydraulic cylinder allowing the movable mold plate to approach or be separated from the fixed mold plate; a hydraulic pressure supply source supplying a hydraulic fluid to the hydraulic cylinder; and a control unit performing driving control on the hydraulic pressure supply source. The control unit includes a flow rate decrease control unit for deceleration for decreasing a flow rate of the hydraulic fluid according to a deceleration gradient set in advance when a movement of the movable mold plate is decelerated according to the deceleration gradient, and a flow rate increase control unit for controlling the flow rate of the hydraulic fluid to increase when the flow rate of the hydraulic fluid is decreased according to the deceleration gradient by the flow rate decrease control unit.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: October 17, 2017
    Assignee: MITSUBISHI HEAV INDUSTRIES PLASTIC TECHNOLOGY CO., LTD.
    Inventors: Masaaki Ikarashi, Mamoru Kawasaki, Takehiro Irie, Toshihiko Kariya
  • Patent number: 9713892
    Abstract: An injection foam molding machine of the invention includes: a movable mold platen; a fixed mold platen; a mold fastening hydraulic cylinder that is provided at each of four corners of both mold platens; a tie bar that is driven by the hydraulic cylinder to fasten the molds; two sets of mold opening and closing actuators that drive the movable mold platen to move close to or away from the fixed mold platen; two sets of dedicated core back devices; and a control device that controls the two sets of mold opening and closing actuators and the two sets of dedicated core back devices, wherein the control device includes a dedicated core back program that simultaneously controls the two sets of mold opening and closing actuators and the two sets of dedicated core back devices during a foaming core back operation of moving the movable mold platen away from the fixed mold platen.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: July 25, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES PLASTIC TECHNOLOGY CO.
    Inventors: Saburo Fujita, Takehiro Irie, Keijiro Sugiura, Toshihiko Kariya
  • Patent number: 9669573
    Abstract: The injection molding apparatus of the present invention includes: a heating cylinder; a screw that is provided rotatably in an inner portion of the heating cylinder; a resin feed hopper that feeds a resin pellet; and a fiber feed device that is provided ahead of the resin feed hopper and feeds reinforcing fibers into the heating cylinder. The screw includes a first stage that is located on a rear side, and in which the resin pellet is melted, and a second stage that is located on a front side, and in which the melted resin pellet and the reinforcing fibers are mixed, and a lead of a second flight provided in the second stage is larger than a lead of a first flight provided in the first stage.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: June 6, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES PLASTIC TECHNOLOGY CO., LTD.
    Inventors: Toshihiko Kariya, Naoki Toda, Munehiro Nobuta, Kiyoshi Kinoshita, Takeshi Yamaguchi, Kosuke Ikeda, Yuji Suzumura, Hitoshi Onuma, Ryoji Okabe, Masanori Takahashi
  • Publication number: 20170050357
    Abstract: This injection molding method uses an injection molding machine for two-material molding, which comprises a first mold part that is provided with a cavity and a second mold part that is provided with a cavity and is arranged in tandem with the first mold part. This injection molding method comprises: a first molding step wherein a material is injected into the cavity of the first mold part and the material in the cavity is compressed; and a second molding step wherein a material is injected into the cavity of the second mold part. A pressure, which is generated in the second mold part by injecting the material into the cavity in the second molding step, acts on the first mold part, and a compressive force is applied to the material in the cavity in the first molding step.
    Type: Application
    Filed: June 6, 2014
    Publication date: February 23, 2017
    Applicant: Mitsubishi Heavy Industries Plastic Technology Co., Ltd.
    Inventors: Toshihiko Kariya, Yasuo Okochi
  • Publication number: 20170015036
    Abstract: In an injection molding method of fiber reinforced resin of the present invention, a resin accumulation region is provided closer to a downstream side than an injection completion position inside a heating cylinder, an injection pressure is given to molten resin that occupies the resin accumulation region in an injection process of a preceding cycle, and a shear force is given to the molten resin that occupies the resin accumulation region in a plasticizing process of a subsequent cycle. An inside of massive reinforcing fibers F is impregnated with the molten resin by giving a high injection pressure to the molten resin that occupies the resin accumulation region. Next, dispersion of the reinforcing fibers is promoted by giving a shear force in the plasticizing process of the subsequent cycle.
    Type: Application
    Filed: May 30, 2014
    Publication date: January 19, 2017
    Inventors: Toshihiko KARIYA, Munehiro NOBUTA, Naoki TODA, Kiyoshi KINOSHITA, Takeshi YAMAGUCHI
  • Publication number: 20170001353
    Abstract: There is provided a screw of an injection molding machine that can eliminate uneven distribution of reinforcing fibers without giving an excessive shear force to the reinforcing fibers. A screw is provided inside a heating cylinder of an injection molding machine to which a resin pellet is fed on an upstream side in a conveyance direction of resin and to which reinforcing fibers are fed on a downstream side therein, and includes: a first stage at which the resin pellet which is fed is melted; and a second stage that continues to the first stage, and at which molten resin and the reinforcing fibers are mixed with each other. A second flight provided at the second stage includes: a large-diameter flight with a relatively large outer diameter; and a small-diameter flight with a relatively small outer diameter.
    Type: Application
    Filed: June 9, 2014
    Publication date: January 5, 2017
    Applicant: Mitsubishi Heavy Industries Plastic Technology Co., Ltd.
    Inventors: Toshihiko KARIYA, Munehiro NOBUTA, Naoki TODA, Kiyoshi KINOSHITA, Takeshi YAMAGUCHI
  • Publication number: 20170001354
    Abstract: There is provided a screw of an injection molding machine that can eliminate uneven distribution of additive components without giving an excessive shear force to the additive components. An injection molding method of the present invention includes: a plasticizing process of feeding a resin pellet P and additive components to a heating cylinder 201 including a screw 10 that can rotate around a rotation axis C and can advance and retreat along the rotation axis C, and generating molten resin M by rotating the screw 10 in a normal direction; and an injection process of injecting to a cavity the molten resin M containing the additive components. In the plasticizing process, retreat operation of forcibly retreating the screw 10 is performed at a predetermined velocity by a predetermined stroke D1 or a predetermined time.
    Type: Application
    Filed: April 20, 2015
    Publication date: January 5, 2017
    Inventors: Munehiro NOBUTA, Naoki TODA, Toshihiko KARIYA, Takeshi YAMAGUCHI, Kiyoshi KINOSHITA
  • Patent number: 9441643
    Abstract: A hydraulic oil storage device and an injection molding device are provided with a connection box that partitions a storage region of a sub-tank into a first region that includes a flow channel opening portion for a coupling tube and a second region other than the first region, in which the connection box is provided with an internal region communication portion that brings the first region and the second region into communication, and causes a pressure loss equal to the pressure loss of the coupling tube, or a pressure loss greater than that pressure loss, and a return tube is connected to the sub-tank so that the flow channel outlet faces the first region.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: September 13, 2016
    Assignees: MITSUBISHI HEAVY INDUSTRIES, LTD., MITSUBISHI HEAVY INDUSTRIES PLASTIC TECHNOLOGY CO., LTD.
    Inventors: Masaaki Ikarashi, Mamoru Kawasaki, Yuichi Hosoi, Toshihiko Kariya, Yoshinao Komatsu
  • Publication number: 20160129619
    Abstract: An injection foam molding machine of the invention includes: a movable mold platen; a fixed mold platen; a mold fastening hydraulic cylinder that is provided at each of four corners of both mold platens; a tie bar that is driven by the hydraulic cylinder to fasten the molds; two sets of mold opening and closing actuators that drive the movable mold platen to move close to or away from the fixed mold platen; two sets of dedicated core back devices; and a control device that controls the two sets of mold opening and closing actuators and the two sets of dedicated core back devices, wherein the control device includes a dedicated core back program that simultaneously controls the two sets of mold opening and closing actuators and the two sets of dedicated core back devices during a foaming core back operation of moving the movable mold platen away from the fixed mold platen.
    Type: Application
    Filed: December 29, 2015
    Publication date: May 12, 2016
    Applicant: MITSUBISHI HEAVY INDUSTRIES PLASTIC TECHNOLOGY CO.
    Inventors: Saburo Fujita, Takehiro Irie, Keijiro Sugiura, Toshihiko Kariya
  • Patent number: 9333690
    Abstract: A method for manufacturing a fiber-reinforced composite material of the present invention includes: the step (a) of placing a non-woven fabric N made of a reinforcement fiber in a movable mold 12; and the step (b) of moving the movable mold 12 toward a fixed mold 11 to close the mold and then injecting a thermoplastic resin into the mold to obtain a molded article formed of the non-woven fabric N and the thermoplastic resin. The mechanical strength of the obtained fiber-reinforced composite material can be enhanced by applying an injection compression molding process as the injection molding process in the step (b).
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: May 10, 2016
    Assignee: MITSUBISHI HEAVY INDUSTRIES PLASTIC TECHNOLOGY
    Inventors: Masahiro Bessho, Shiki Matsuo, Wataru Nishimura, Toshihiko Kariya, Naoki Toda
  • Publication number: 20160110032
    Abstract: Provided is a control device for an injection molding machine, capable of reducing the load on a user, in relation to display image selection. The control device for the injection molding machine comprises: a display unit that displays display images including information relating to molding conditions for the injection molding machine; display image selection buttons that directly summon display images and display the display images on the display unit; and a storage unit that stores a plurality of desired display image selection buttons, as customizable menu display items.
    Type: Application
    Filed: November 7, 2013
    Publication date: April 21, 2016
    Inventors: Yasuo OKOCHI, Takashi TAKII, Toshihiko KARIYA
  • Publication number: 20160082504
    Abstract: Provided is a control device for an injection molding machine, capable of reducing the load on a user when re-displaying a previously displayed screen. The control device (20) for the injection molding machine (1) controls the display of display images on a display unit (29). This control device (20) divides the display unit (29) into a first display area (31) and a second display area (32) and, if an instruction to scroll in the vertical direction is received when a first display image (P1) is displayed in the first display area (31) and a second display image (P2) is displayed in the second display area (32), synchronously scrolls the first display image (P1) and the second display image (P2) whilst maintaining the relative positions of the first display image (P1) and the second display image (P2).
    Type: Application
    Filed: November 7, 2013
    Publication date: March 24, 2016
    Inventors: Yasuo OKOCHI, Takashi TAKII, Toshihiko KARIYA
  • Patent number: 9254600
    Abstract: An injection foam molding machine of the invention includes: a movable mold platen; a fixed mold platen; a mold fastening hydraulic cylinder that is provided at each of four corners of both mold platens; a tie bar that is driven by the hydraulic cylinder to fasten the molds; two sets of mold opening and closing actuators that drive the movable mold platen to move close to or away from the fixed mold platen; two sets of dedicated core back devices; and a control device that controls the two sets of mold opening and closing actuators and the two sets of dedicated core back devices, wherein the control device includes a dedicated core back program that simultaneously controls the two sets of mold opening and closing actuators and the two sets of dedicated core back devices during a foaming core back operation of moving the movable mold platen away from the fixed mold platen.
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: February 9, 2016
    Assignee: MITSUBISHI HEAVY INDUSTRIES PLASTIC TECHNOLOGY CO., LTD.
    Inventors: Saburo Fujita, Takehiro Irie, Keijiro Sugiura, Toshihiko Kariya