Patents by Inventor Toshihiko Nagase

Toshihiko Nagase has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9640584
    Abstract: According to one embodiment, a magnetoresistive memory device, includes a metal buffer layer provided on a substrate, a crystalline metal nitride buffer layer provided on the metal buffer layer, and a magnetoresistive element provided on the metal nitride buffer layer. The metal nitride buffer layer and the metal buffer layer contain a same material.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: May 2, 2017
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Makoto Nagamine, Youngmin Eeh, Koji Ueda, Daisuke Watanabe, Kazuya Sawada, Toshihiko Nagase
  • Publication number: 20170117459
    Abstract: A magnetoresistive element includes a storage layer as a ferromagnetic layer which has magnetic anisotropy perpendicular to film planes, and in which a magnetization direction is variable, a reference layer as a ferromagnetic layer which has magnetic anisotropy perpendicular to film planes, and in which a magnetization direction is invariable, a tunnel barrier layer as a nonmagnetic layer formed between the storage layer and the reference layer, and a first underlayer formed on a side of the storage layer, which is opposite to a side facing the tunnel barrier layer, and containing amorphous W.
    Type: Application
    Filed: January 3, 2017
    Publication date: April 27, 2017
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Daisuke WATANABE, Youngmin EEH, Kazuya SAWADA, Koji UEDA, Toshihiko NAGASE
  • Patent number: 9620561
    Abstract: According to one embodiment, a magnetoresistive element is disclosed. The magnetoresistive element includes an underlayer containing aluminum (Al), nitrogen (N) and X. The X is an element other than Al and N. A first magnetic layer is provided on the underlayer. A nonmagnetic layer is provided on the first magnetic layer. A second magnetic layer is provided on the nonmagnetic layer.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: April 11, 2017
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Toshihiko Nagase, Daisuke Watanabe, Youngmin Eeh, Koji Ueda, Kazuya Sawada, Makoto Nagamine
  • Publication number: 20160380182
    Abstract: According to one embodiment, there is provided a magnetoresistive element, including a first magnetic layer, a nonmagnetic layer on the first magnetic layer, and a second magnetic layer on the nonmagnetic layer, wherein one of the first and second magnetic layers include one of Co and Fe, and a material having a higher standard electrode potential than Co and Fe.
    Type: Application
    Filed: September 12, 2016
    Publication date: December 29, 2016
    Applicants: KABUSHIKI KAISHA TOSHIBA, SK HYNIX INC.
    Inventors: Daisuke WATANABE, Yang Kon KIM, Makoto NAGAMINE, Youngmin EEH, Koji UEDA, Toshihiko NAGASE, Kazuya SAWADA, Guk Cheon KIM, Bo Mi LEE, Won Joon CHOI
  • Patent number: 9529714
    Abstract: An electronic device includes a semiconductor memory, and the semiconductor memory includes a first magnetic layer having a variable magnetization direction; a second magnetic layer having a pinned magnetization direction; and a tunnel barrier layer interposed between the first magnetic layer and the second magnetic layer, wherein the second magnetic layer includes a ferromagnetic material with molybdenum (Mo) added thereto.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: December 27, 2016
    Assignees: SK Hynix Inc., Kabushiki Kaisha Toshiba
    Inventors: Yang-Kon Kim, Bo-Mi Lee, Won-Joon Choi, Guk-Cheon Kim, Daisuke Watanabe, Makoto Nagamine, Young-Min Eeh, Koji Ueda, Toshihiko Nagase, Kazuya Sawada
  • Publication number: 20160315251
    Abstract: A magnetoresistive element including a first magnetic layer; a first nonmagnetic layer provided on the first magnetic layer, the first nonmagnetic layer formed of SrTiO3, SrFeO3, LaAlO3, NdCoO3, or BN; and a second magnetic layer provided on the first nonmagnetic layer, wherein the first nonmagnetic layer is lattice-matched to the first magnetic layer, and the second magnetic layer is lattice-matched to the first nonmagnetic layer.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 27, 2016
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Toshihiko NAGASE, Tadashi KAI, Youngmin EEH, Koji UEDA, Daisuke WATANABE, Kazuya SAWADA, Hiroaki YODA
  • Patent number: 9461240
    Abstract: According to one embodiment, a magnetoresistive memory device includes a first magnetic layer, a second magnetic layer, a nonmagnetic layer provided between the first magnetic layer and the second magnetic layer, and a third magnetic layer provided on a side of the first or second magnetic layer opposite to the nonmagnetic layer. The third magnetic layer has a multilayer film having an artificial lattice structure, and the third magnetic layer is partly microcrystalline or amorphous.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: October 4, 2016
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kazuya Sawada, Toshihiko Nagase, Youngmin Eeh, Koji Ueda, Daisuke Watanabe, Makoto Nagamine
  • Publication number: 20160254442
    Abstract: According to one embodiment, a magnetoresistive memory device includes a first magnetic layer, a second magnetic layer, a nonmagnetic layer provided between the first magnetic layer and the second magnetic layer, and a third magnetic layer provided on a side of the first or second magnetic layer opposite to the nonmagnetic layer. The third magnetic layer has a multilayer film having an artificial lattice structure, and the third magnetic layer is partly microcrystalline or amorphous.
    Type: Application
    Filed: July 30, 2015
    Publication date: September 1, 2016
    Inventors: Kazuya SAWADA, Toshihiko NAGASE, Youngmin EEH, Koji UEDA, Daisuke WATANABE, Makoto NAGAMINE
  • Patent number: 9373776
    Abstract: According to one embodiment, a magnetoresistive element includes first and second magnetic layers and a first nonmagnetic layer. The first magnetic layer has an axis of easy magnetization perpendicular to a film plane, and a variable magnetization. The second magnetic layer has an axis of easy magnetization perpendicular to a film plane, and an invariable magnetization. The first nonmagnetic layer is provided between the first and second magnetic layers. The second magnetic layer includes third and fourth magnetic layers, and a second nonmagnetic layer formed between the third and fourth magnetic layers. The third magnetic layer is in contact with the first nonmagnetic layer and includes Co and at least one of Zr, Nb, Mo, Hf, Ta, and W.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: June 21, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshihiko Nagase, Eiji Kitagawa, Katsuya Nishiyama, Tadashi Kai, Koji Ueda, Daisuke Watanabe
  • Publication number: 20160163968
    Abstract: According to one embodiment, a magnetoresistive element comprises a first magnetic layer, a second magnetic layer, a first nonmagnetic layer, a second nonmagnetic layer, and a third magnetic layer. The first magnetic layer has a variable magnetization direction. The second magnetic layer has an invariable magnetization direction and includes a nonmagnetic material film and a magnetic material film. The first nonmagnetic layer is arranged between the first magnetic layer and the second magnetic layer. The second nonmagnetic layer is arranged on a surface of the second magnetic layer. The third magnetic layer is arranged on a surface of the second nonmagnetic layer. The second nonmagnetic layer is in contact with the nonmagnetic material film included in the second magnetic layer.
    Type: Application
    Filed: February 11, 2016
    Publication date: June 9, 2016
    Inventors: Koji UEDA, Toshihiko NAGASE, Kazuya SAWADA, Youngmin EEH, Daisuke WATANABE, Hiroaki YODA
  • Publication number: 20160130693
    Abstract: According to one embodiment, a method of manufacturing a magnetoresistive memory device includes forming a first magnetic layer on a substrate, forming a cap layer on the first magnetic layer, heating a base including the cap layer after the cap layer is formed, forming a nonmagnetic layer on the cap layer while the base is heated, cooling the base including the nonmagnetic layer after the nonmagnetic layer is formed, and forming a second magnetic layer on the nonmagnetic layer after the base is cooled.
    Type: Application
    Filed: March 11, 2015
    Publication date: May 12, 2016
    Inventors: Kazuya SAWADA, Toshihiko NAGASE, Youngmin EEH, Koji UEDA, Daisuke WATANABE, Makoto NAGAMINE
  • Patent number: 9312477
    Abstract: According to one embodiment, a semiconductor storage device is disclosed. The device includes first magnetic layer, second magnetic layer, first nonmagnetic layer between them. The first magnetic layer includes a structure in which first magnetic material film, second magnetic material film, and nonmagnetic material film between the first and second magnetic material films are stacked. The first magnetic material film is nearest to the first nonmagnetic layer in the first magnetic layer. The nonmagnetic material film includes at least one of Ta, Zr, Nb, Mo, Ru, Ti, V, Cr, W, Hf. The second magnetic material film includes stacked materials, including first magnetic material nearest to the first nonmagnetic layer among the stacked materials, and second magnetic material which is same magnetic material as the first magnetic material and has smaller thickness than the first magnetic material.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: April 12, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Daisuke Watanabe, Katsuya Nishiyama, Toshihiko Nagase, Koji Ueda, Tadashi Kai
  • Patent number: 9312475
    Abstract: According to one embodiment, a magnetoresistive element includes first and second magnetic layers, a first nonmagnetic layer, a conductive layer. The first and second magnetic layers have axes of easy magnetization perpendicular to a film plane. The first and second magnetic layers have variable and invariable magnetization directions, respectively. The first nonmagnetic layer is between the first and second magnetic layers. The conductive layer is on a surface of the first magnetic layer opposite to a surface on which the first nonmagnetic layer is formed. The first magnetic layer has a structure obtained by alternately laminating magnetic and nonmagnetic materials. The nonmagnetic material includes at least one of Ta, W, Nb, Mo, Zr, Hf. The magnetic material includes Co and Fe. One of the magnetic materials contacts the first nonmagnetic layer. One of the nonmagnetic materials contacts the conductive layer.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: April 12, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshihiko Nagase, Daisuke Watanabe, Koji Ueda, Katsuya Nishiyama, Eiji Kitagawa, Kenji Noma, Tadashi Kai
  • Publication number: 20160099287
    Abstract: According to one embodiment, a magnetoresistive memory device, includes a metal buffer layer provided on a substrate, a crystalline metal nitride buffer layer provided on the metal buffer layer, and a magnetoresistive element provided on the metal nitride buffer layer. The metal nitride buffer layer and the metal buffer layer contain a same material.
    Type: Application
    Filed: March 11, 2015
    Publication date: April 7, 2016
    Inventors: Makoto NAGAMINE, Youngmin EEH, Koji UEDA, Daisuke WATANABE, Kazuya SAWADA, Toshihiko NAGASE
  • Publication number: 20160099288
    Abstract: According to one embodiment, a magnetic memory includes a first magnetic layer, a second magnetic layer, a non-magnetic intermediate layer provided between the first magnetic layer and the second magnetic layer and an underlying layer provided on an opposite side of the first magnetic layer with respect to the intermediate layer, and the underlying layer contains AlN of a hcp structure.
    Type: Application
    Filed: March 12, 2015
    Publication date: April 7, 2016
    Inventors: Daisuke WATANABE, Makoto NAGAMINE, Youngmin EEH, Koji UEDA, Toshihiko NAGASE, Kazuya SAWADA, Yang Kon KIM, Bo Mi LEE, Guk Cheon KIM, Won Joon CHOI, Ki Seon PARK
  • Publication number: 20160099408
    Abstract: According to one embodiment, a method of manufacturing an insulating film, includes forming an insulating film on a substrate by sputtering, measuring a thickness of the insulating film at a plurality of locations, and irradiating a surface portion of the insulating film with X rays or ions, based on the measured thickness.
    Type: Application
    Filed: March 5, 2015
    Publication date: April 7, 2016
    Inventors: Makoto NAGAMINE, Youngmin EEH, Koji UEDA, Daisuke WATANABE, Kazuya SAWADA, Toshihiko NAGASE
  • Patent number: 9293695
    Abstract: According to one embodiment, a magnetoresistive element comprises a first magnetic layer, a second magnetic layer, a first nonmagnetic layer, a second nonmagnetic layer, and a third magnetic layer. The first magnetic layer has a variable magnetization direction. The second magnetic layer has an invariable magnetization direction and includes a nonmagnetic material film and a magnetic material film. The first nonmagnetic layer is arranged between the first magnetic layer and the second magnetic layer. The second nonmagnetic layer is arranged on a surface of the second magnetic layer. The third magnetic layer is arranged on a surface of the second nonmagnetic layer. The second nonmagnetic layer is in contact with the nonmagnetic material film included in the second magnetic layer.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: March 22, 2016
    Inventors: Koji Ueda, Toshihiko Nagase, Kazuya Sawada, Youngmin Eeh, Daisuke Watanabe, Hiroaki Yoda
  • Publication number: 20160072046
    Abstract: According to one embodiment, a magnetoresistive element is disclosed. The magnetoresistive element includes an underlayer containing aluminum (Al), nitrogen (N) and X. The X is an element other than Al and N. A first magnetic layer is provided on the underlayer. A nonmagnetic layer is provided on the first magnetic layer. A second magnetic layer is provided on the nonmagnetic layer.
    Type: Application
    Filed: February 20, 2015
    Publication date: March 10, 2016
    Inventors: Toshihiko NAGASE, Daisuke WATANABE, Youngmin EEH, Koji UEDA, Kazuya SAWADA, Makoto NAGAMINE
  • Patent number: 9269890
    Abstract: According to one embodiment, a magnetoresistance effect element includes a reference layer, a shift canceling layer, a storage layer provided between the reference layer and the shift canceling layer, a tunnel barrier layer provided between the reference layer and the storage layer, and a spacer layer provided between the shift canceling layer and the storage layer, wherein a pattern of the storage layer is provided inside a pattern of the shift canceling layer when the patterns of the storage layer and the shift canceling layer are viewed from a direction perpendicular to the patterns of the storage layer and the shift canceling layer.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: February 23, 2016
    Inventors: Masahiko Nakayama, Toshihiko Nagase, Tadashi Kai, Youngmin Eeh, Koji Ueda, Yutaka Hashimoto, Daisuke Watanabe, Kazuya Sawada
  • Publication number: 20160043300
    Abstract: An electronic device includes semiconductor memory, the semiconductor memory including an under layer; a first magnetic layer located over the under layer and having a variable magnetization direction; a tunnel barrier layer located over the first magnetic layer; and a second magnetic layer located over the tunnel barrier layer and having a pinned magnetization direction, wherein the under layer includes a first metal nitride layer having a NaCl crystal structure and a second metal nitride layer containing a light metal.
    Type: Application
    Filed: December 2, 2014
    Publication date: February 11, 2016
    Inventors: Yang-Kon KIM, Ki-Seon PARK, Bo-Mi LEE, Won-Joon CHOI, Guk-Cheon KIM, Daisuke WATANABE, Makoto NAGAMINE, Young-Min EEH, Koji UEDA, Toshihiko NAGASE, Kazuya SAWADA