Patents by Inventor Toshihiko Setoguchi

Toshihiko Setoguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190285601
    Abstract: An analysis condition adjusting device of a fuel analyzer includes a first NOx computing unit for calculating a reference NOx estimation value using a previously obtained first industrial analysis value of a fuel sample, a second NOx computing unit for calculating a plurality of varied NOx estimation value by varying a value of each of components of the first industrial analysis value, a NOx error computing unit for computing an error as a NOx error between the reference NOx estimation value and each of the varied NOx estimation values, an analysis error tolerance range setting unit for setting an analysis error tolerance range of each of the components based on a value variation amount of each of the components, the value variation amount being defined such that the NOx error is within a tolerance range, and an analysis condition adjusting unit for adjusting an analysis condition of a fuel analyzer.
    Type: Application
    Filed: February 14, 2019
    Publication date: September 19, 2019
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Ryohei Ohashi, Toshihiko Setoguchi, Junji Imada, Atsushi Tanaka, Keigo Matsumoto
  • Patent number: 8771629
    Abstract: Included are a nano-carbon material production unit for producing a nano-carbon material using a fluidized catalyst formed by granulating a carrier supporting an active component, an acid treatment unit for dissolving and separating a catalyst by an acid solution by feeding a catalyst-containing nano-carbon material into the acid solution, and a pH adjustment unit, which is an anti-agglomeration treatment unit, provided on a downstream side of the acid treatment unit, for performing an anti-agglomeration treatment to prevent agglomeration among nano-carbons due to repulsion caused by dissociation among oxygen-containing functional groups added to the nano-carbon material.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: July 8, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Kiyoshi Tatsuhara, Tomoaki Sugiyama, Atsushi Tanaka, Toshihiko Setoguchi
  • Patent number: 8661993
    Abstract: In an exhaust gas treatment system including a denitration device that removes nitrogen oxide in exhaust gas from a heavy fuel-fired boiler, an air preheater that recovers heat in the gas after the nitrogen oxide is removed, an electric precipitator that removes dust while adding ammonia into the gas after heat recovery, a desulfurization device that removes sulfur oxide in the gas after dust removal, and a stack that exhausts the gas after desulfurization to the outside, an ash-shear-force measuring instrument is provided to measure an ash shear force, which is ash flowability, on the downstream side of the electric precipitator, so that a feed rate of an air supply unit that supplies air to the boiler is reduced according to ash shear-force information.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: March 4, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Naoyuki Kamiyama, Tomoo Akiyama, Toshihiko Setoguchi, Koutaro Fujimura, Yoshihisa Yamamoto, Koichi Tagami, Yasutoshi Ueda
  • Patent number: 8318124
    Abstract: The present invention is provided with a reaction apparatus (12) that supplies carbon raw material (11) and fine particles (50) to cause carbon nanofibers to grow on surfaces of the fine particles (50), a heating apparatus (20) that heats the reaction apparatus 12, a recovery line (23) that recovers fine particles on which the carbon nanofibers have grown from the reaction apparatus, and a carbon nanofiber separating apparatus (24) that separates carbon nanofibers (52) from the recovered fine particles on which carbon nanofibers have been grown.
    Type: Grant
    Filed: November 27, 2003
    Date of Patent: November 27, 2012
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yuichi Fujioka, Toshihiko Setoguchi, Kazuya Suenaga, Susumu Miki
  • Publication number: 20110060162
    Abstract: Included are a nano-carbon material production unit for producing a nano-carbon material using a fluidized catalyst formed by granulating a carrier supporting an active component, an acid treatment unit for dissolving and separating a catalyst by an acid solution by feeding a catalyst-containing nano-carbon material into the acid solution, and a pH adjustment unit, which is an anti-agglomeration treatment unit, provided on a downstream side of the acid treatment unit, for performing an anti-agglomeration treatment to prevent agglomeration among nano-carbons due to repulsion caused by dissociation among oxygen-containing functional groups added to the nano-carbon material.
    Type: Application
    Filed: May 28, 2009
    Publication date: March 10, 2011
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Kiyoshi Tatsuhara, Tomoaki Sugiyama, Atsushi Tanaka, Toshihiko Setoguchi
  • Publication number: 20100269740
    Abstract: In an exhaust gas treatment system including a denitration device that removes nitrogen oxide in exhaust gas from a heavy fuel-fired boiler, an air preheater that recovers heat in the gas after the nitrogen oxide is removed, an electric precipitator that removes dust while adding ammonia into the gas after heat recovery, a desulfurization device that removes sulfur oxide in the gas after dust removal, and a stack that exhausts the gas after desulfurization to the outside, an ash-shear-force measuring instrument is provided to measure an ash shear force, which is ash flowability, on the downstream side of the electric precipitator, so that a feed rate of an air supply unit that supplies air to the boiler is reduced according to ash shear-force information.
    Type: Application
    Filed: February 9, 2009
    Publication date: October 28, 2010
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Naoyuki Kamiyama, Tomoo Akiyama, Toshihiko Setoguchi, Koutaro Fujimura, Yoshihisa Yamamoto, Koichi Tagami, Yasutoshi Ueda
  • Patent number: 7700065
    Abstract: A carbon nano-fibrous rod including a predetermined number of hexagonal carbon layers extending in one direction, and a fibrous nanoncarbon which includes a plurality of the carbon nano-fibrous rods three-dimensionally gathered are disclosed.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: April 20, 2010
    Assignees: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yuichi Fujioka, Akinori Yasutake, Toshihiko Setoguchi, Isao Mochida, Seong-Ho Yoon
  • Patent number: 7655204
    Abstract: This invention relates to a technique for removing nitrogen oxides (NOx) present in exhaust gases discharged from boilers and the like. When the temperature of the exhaust gas is 100° C. or below, a heat-treated active carbon produced by heat-treating a raw active carbon at 600 to 1,200° C. in a non-oxidizing atmosphere so as to remove oxygen-containing functional groups present at the surfaces thereof and thereby reduce the atomic surface oxygen/surface carbon ratio to 0.05 or less is preferably used. When the temperature of the exhaust gas exceeds 100° C., a heat-treated active carbon produced by heat-treating a raw active carbon at 600 to 1,200° C. in a non-oxidizing atmosphere and activating the surfaces thereof with sulfuric acid or nitric acid to impart oxidizing oxygen-containing functional groups thereto is preferably used.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: February 2, 2010
    Assignee: Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Isao Mochida, Akinori Yasutake, Toshihiko Setoguchi, Norihisa Kobayashi, Takahiro Kasuh, Masaaki Yoshikawa
  • Publication number: 20090081097
    Abstract: This invention relates to a technique for removing nitrogen oxides (NOx) present in exhaust gases discharged from boilers and the like. When the temperature of the exhaust gas is 100° C. or below, a heat-treated active carbon produced by heat-treating a raw active carbon at 600 to 1,200° C. in a non-oxidizing atmosphere so as to remove oxygen-containing functional groups present at the surfaces thereof and thereby reduce the atomic surface oxygen/surface carbon ratio to 0.05 or less is preferably used. When the temperature of the exhaust gas exceeds 100° C., a heat-treated active carbon produced by heat-treating a raw active carbon at 600 to 1,200° C. in a non-oxidizing atmosphere and activating the surfaces thereof with sulfuric acid or nitric acid to impart oxidizing oxygen-containing functional groups thereto is preferably used.
    Type: Application
    Filed: November 14, 2008
    Publication date: March 26, 2009
    Inventors: Isao Mochida, Akinori Yasutake, Toshihiko Setoguchi, Norihisa Kobayashi, Takahiro Kasuh, Masaaki Yoshikawa
  • Patent number: 7465429
    Abstract: This invention relates to a technique for removing nitrogen oxides (NOx) present in exhaust gases discharged from boilers and the like. When the temperature of the exhaust gas is 100° C. or below, a heat-treated active carbon produced by heat-treating a raw active carbon at 600 to 1,200° C. in a non-oxidizing atmosphere so as to remove oxygen-containing functional groups present at the surfaces thereof and thereby reduce the atomic surface oxygen/surface carbon ratio to 0.05 or less is preferably used. When the temperature of the exhaust gas exceeds 100° C., a heat-treated active carbon produced by heat-treating a raw active carbon at 600. to 1,200° C. in a non-oxidizing atmosphere and activating the surfaces thereof with sulfuric acid or nitric acid to impart oxidizing oxygen-containing functional groups thereto is preferably used.
    Type: Grant
    Filed: February 25, 2002
    Date of Patent: December 16, 2008
    Assignees: Osaka Gas Company Limited, Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Isao Mochida, Akinori Yasutake, Toshihiko Setoguchi, Norihisa Kobayashi, Takahiro Kasuh, Masaaki Yoshikawa
  • Publication number: 20060104887
    Abstract: The present invention is provided with a reaction apparatus (12) that supplies carbon raw material (11) and fine particles (50) to cause carbon nanofibers to grow on surfaces of the fine particles (50), a heating apparatus (20) that heats the reaction apparatus 12, a recovery line (23) that recovers fine particles on which the carbon nanofibers have grown from the reaction apparatus, and a carbon nanofiber separating apparatus (24) that separates carbon nanofibers (52) from the recovered fine particles on which carbon nanofibers have been grown.
    Type: Application
    Filed: November 27, 2003
    Publication date: May 18, 2006
    Inventors: Yuichi Fujioka, Toshihiko Setoguchi, Kazuya Suenaga, Susumu Miki
  • Publication number: 20060057054
    Abstract: A carbon nano-fibrous rod 12 is constituted of a hexagonal carbon layer 11 having a central axis extending in one direction, and the carbon nano-fibrous rods 12 are three-dimensionally gathered to form fibrous nanocarbon.
    Type: Application
    Filed: November 21, 2003
    Publication date: March 16, 2006
    Inventors: Yuichi Fujioka, Akinori Yasutake, Toshihiko Setoguchi, Isao Mochida
  • Patent number: 6905544
    Abstract: The invention has as an object proving a carbon nanomaterial fabrication method that can continuously mass-produce a high purity carbon a nanomaterial. The tube-shaped or fiber-shaped carbon nanomaterial having carbon as the main constituent is fabricated with a compound that includes carbon (raw material) and an additive that includes a metal by using a fluidized bed reactor.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: June 14, 2005
    Assignees: Mitsubishi Heavy Industries, Ltd., Osaka Gas Co., Ltd.
    Inventors: Toshihiko Setoguchi, Yuichi Fujioka, Yoshihiko Tsuchiyama, Akinori Yasutake, Matsuhei Noda, Norihisa Kobayashi, Ryoichi Nishida, Hitoshi Nishino, Katsuhide Okimi, Akihiro Hachiya
  • Patent number: 6814948
    Abstract: An active carbon for use in the treatment of exhaust gas can be obtained by heat-treating a starting active carbon fiber derived from polyacrylonitrile, pitch or the like or a starting particulate active carbon in a non-oxidizing atmosphere. The heat-treating temperature is preferably in the range of 600 to 1,200 ° C. for use in the desulfurization of exhaust gas, and in range of 600 to 1,000° C. for use in the denitration of exhaust gas. By using the resulting heat-treated active carbon for the purpose of desulfurization, the sulfur oxide concentration in exhaust gas can be reduced to 5 ppm or below. Moreover, by using the heat-treated active carbon in combination with conventional denitration based on selective catalytic reduction, the nitrogen oxide concentration in exhaust gas can be reduced to 1 ppm or below.
    Type: Grant
    Filed: August 21, 2000
    Date of Patent: November 9, 2004
    Assignees: Mitsubishi Jukogyo Kabushiki Kaisha, Osaka Gas Company Limited
    Inventors: Akinori Yasutake, Toshihiko Setoguchi, Norihisa Kobayashi, Takahiro Kasuh, Masaaki Yoshikawa, Isao Mochida
  • Publication number: 20040000697
    Abstract: The invention has as an object proving a carbon nanomaterial fabrication method that can continuously mass-produce a high purity carbon nanomaterial. The tube-shaped or fiber-shaped carbon nanomaterial having carbon as the main constituent is fabricated with a compound that includes carbon (raw material) and an additive that includes a metal by using a fluidized bed reactor.
    Type: Application
    Filed: February 21, 2003
    Publication date: January 1, 2004
    Inventors: Toshihiko Setoguchi, Yuichi Fujioka, Yoshihiko Tsuchiyama, Akinori Yasutake, Matsuhei Noda, Norihisa Kobayashi, Ryoichi Nishida, Hitoshi Nishino, Katsuhide Okimi, Akihiro Hachiya
  • Patent number: 6631612
    Abstract: A device to eliminate particulates contained in exhaust gas ejected from motors, such as diesel engines for ships, surface transportation vehicles and overland fixed diesel engines, and a process to eliminate particulates contained in the exhaust gas are provided. The device of the present invention is a device for eliminating particulates contained in exhaust gas 10 ejected from diesel engines constituted by a discoid-shaped filter 11 used as a capturing means to capture the particulates and sprayers 13 having a plurality of nozzles 13a, such as spray type and shower type, used as a catalyst attaching means to attach an alkaline metal catalyst solution 12 onto the surface of the captured particulates in the discoid-shaped filter 11, and the device attaches the catalyst onto the surface of the captured particulates, and then burns and decomposes the unburned particulates portion in the exhaust gas.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: October 14, 2003
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Toshihiko Setoguchi, Yuichi Fujioka, Yoshihiko Tsuchiyama, Toshiaki Ohkubo, Akinori Yasutake, Norihisa Kobayashi, Akira Hattori
  • Patent number: 6475445
    Abstract: CaS oxidation has CaS particles oxidized into CaSO4 completely as far as to the interior of the particle. The interior of an oxidation apparatus 1 is partially partitioned by a partition 22 to thereby form a first fluidized bed 20 on the inner side, a second fluidized bed 21 on the outer side and a space portion 23 thereabove. A heat exchanger 27 having a baffle plate is disposed on the inner side of the partition 22 and an in-bed heat exchanger 33 is disposed on the outer side of same. A desulfurizing product-containing fine powder 204 and coarse powder 205 and a mixture gas 206 of nitrogen, oxygen and steam are supplied into the second fluidized bed 21. Also, coal 200 and coal char 201 are supplied into the first fluidized bed 20 from below.
    Type: Grant
    Filed: September 13, 1999
    Date of Patent: November 5, 2002
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yoshihiko Tsuchiyama, Yuichi Fujioka, Toshihiko Setoguchi, Katsuhiko Shinoda, Kenji Tagashira, Shigeyasu Ishigami, Yoshinori Kobayashi
  • Publication number: 20020132735
    Abstract: This invention relates to a technique for removing nitrogen oxides (NOx) present in exhaust gases discharged from boilers and the like. When the temperature of the exhaust gas is 100° C. or below, a heat-treated active carbon produced by heat-treating a raw active carbon at 600 to 1,200° C. in a non-oxidizing atmosphere so as to remove oxygen-containing functional groups present at the surfaces thereof and thereby reduce the atomic surface oxygen/surface carbon ratio to 0.05 or less is preferably used. When the temperature of the exhaust gas exceeds 100° C., a heat-treated active carbon produced by heat-treating a raw active carbon at 600. to 1,200° C. in a non-oxidizing atmosphere and activating the surfaces thereof with sulfuric acid or nitric acid to impart oxidizing oxygen-containing functional groups thereto is preferably used.
    Type: Application
    Filed: February 25, 2002
    Publication date: September 19, 2002
    Applicant: OSAKA GAS COMPANY LIMITED
    Inventors: Isao Mochida, Akinori Yasutake, Toshihiko Setoguchi, Norihisa Kobayashi, Takahiro Kasuh, Masaaki Yoshikawa
  • Patent number: 6383463
    Abstract: A process for the denitration of combustion exhaust gas from combustion equipment by passing the exhaust gas through an ammonia reduction denitrator, comprises providing a bypass having a low-temperature denitrator installed therein; while the temperature of the exhaust gas is not high enough to allow the ammonia reduction denitrator to function properly, as encountered immediately after starting the combustion equipment, passing the exhaust gas through the bypass to perform the denitration thereof by means of the low-temperature denitrator; when the ammonia reduction denitrator has come to function properly, closing the bypass to perform the denitration of the exhaust gas by means of the ammonia reduction denitrator; and regenerating a catalyst within said low-temperature denitrator while the by-pass is closed.
    Type: Grant
    Filed: January 7, 1999
    Date of Patent: May 7, 2002
    Assignees: Mitsubishi Heavy Industries, Ltd., Osaka Gas Company Limited
    Inventors: Isao Mochida, Akinori Yasutake, Toshihiko Setoguchi, Norihisa Kobayashi, Hitoshi Nakamura, Takahiro Kasuh, Masaaki Yoshikawa
  • Publication number: 20010010153
    Abstract: A device to eliminate particulates contained in exhaust gas ejected from motors, such as diesel engines for ships, surface transportation vehicles and overland fixed diesel engines, and a process to eliminate particulates contained in the exhaust gas are provided.
    Type: Application
    Filed: December 15, 2000
    Publication date: August 2, 2001
    Inventors: Toshihiko Setoguchi, Yuichi Fujioka, Yoshihiko Tsuchiyama, Toshiaki Ohkubo, Akinori Yasutake, Norihisa Kobayashi, Akira Hattori