Patents by Inventor Toshihiro Kugimiya

Toshihiro Kugimiya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140167038
    Abstract: The inventive concept relates to a thin film transistor and a thin film transistor array panel and, in detail, relates to a thin film transistor including an oxide semiconductor. A thin film transistor according to an exemplary embodiment of the inventive concept includes: a gate electrode; a gate insulating layer positioned on or under the gate electrode; a first semiconductor and a second semiconductor that overlap the gate electrode with the gate insulating layer interposed therebetween, the first semiconductor and the second semiconductor contacting each other; a source electrode connected to the second semiconductor; and a drain electrode connected to the second semiconductor and facing the source electrode, wherein the second semiconductor includes gallium (Ga) that is not included in the first semiconductor, and a content of gallium (Ga) in the second semiconductor is greater than 0 at. % and less than or equal to about 33 at. %.
    Type: Application
    Filed: February 12, 2014
    Publication date: June 19, 2014
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
    Inventors: Byung Du AHN, Ji Hun LIM, Gun Hee KIM, Kyoung Won LEE, Je Hun LEE, HIROSHI GOTO, AYA MIKI, SHINYA MORITA, TOSHIHIRO KUGIMIYA, Yeon Hong KIM, Yeon Gon MO, Kwang Suk KIM
  • Patent number: 8743307
    Abstract: A display device includes a first substrate, a gate line disposed on the first substrate and including a gate electrode, a gate insulating layer disposed on the gate line, a semiconductor layer disposed on the gate insulating layer, a data line disposed on the semiconductor layer and connected to a source electrode, a drain electrode disposed on the semiconductor layer and facing the source electrode and a passivation layer disposed on the data line, in which the semiconductor layer is formed of an oxide semiconductor including indium, tin, and zinc. The indium is present in an amount of about 5 atomic percent (at %) to about 50 at %, and a ratio of the zinc to the tin is about 1.38 to about 3.88.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: June 3, 2014
    Assignees: Samsung Display Co, Ltd., Kobe Steel, Ltd.
    Inventors: Jae Woo Park, Je Hun Lee, Byung Du Ahn, Sei-Yong Park, Jun Hyun Park, Gun Hee Kim, Ji Hun Lim, Kyoung Won Lee, Toshihiro Kugimiya, Aya Miki, Shinya Morita, Tomoya Kishi, Hiroaki Tao, Hiroshi Goto
  • Publication number: 20140131688
    Abstract: Provided is an interconnection structure comprising a reflective anode electrode for organic EL displays, which is provided with an Al alloy film that has excellent durability and is capable of assuring stable light emission characteristics even in cases where an Al reflective film is directly connected with an organic layer, while achieving high yield. The present invention is related to an interconnection structure which comprises, on a substrate, an Al alloy film that constitutes a reflective anode electrode for organic EL displays and an organic layer that contains a light-emitting layer. In the interconnection structure, the Al alloy film contains a specific rare earth element in an amount of 0.05-5% by atom and the organic layer is directly connected onto the Al alloy film.
    Type: Application
    Filed: May 18, 2012
    Publication date: May 15, 2014
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Hiroyuki Okuno, Aya Miki, Toshihiro Kugimiya
  • Publication number: 20140091306
    Abstract: Provided is a technique that allows oxidation of Cu wires to be effectively prevented during plasma processing when forming a passivation film for a display device that utilizes an oxide semiconductor layer. This wiring structure comprises a semiconductor layer (oxide semiconductor) for a thin film transistor, a Cu alloy film (laminated structure comprising a first layer (X) and a second layer (Z)), and a passivation film that are formed on a substrate, starting from the substrate side. The first layer (X) is made of an element that exhibits low electrical resistivity, such as pure Cu; and the second layer contains a plasma-oxidation-resistance improving element. The second layer (Z) is directly connected, at least partially, to the passivation film.
    Type: Application
    Filed: March 12, 2012
    Publication date: April 3, 2014
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Aya Miki, Toshihiro Kugimiya
  • Publication number: 20140086791
    Abstract: Provided is an Al alloy film for display devices, which has excellent heat resistance under high temperatures, low electric resistance (wiring resistance), and excellent corrosion resistance under alkaline environments. The present invention relates to an Al alloy film containing Ge (0.01-2.0 at. %) and a group X element (Ta, Ti, Zr, Hf, W, Cr, Nb, Mo, Ir, Pt, Re, and/or Os), wherein, with regard to precipitates each containing Al, the group X element and Ge generated when a heat treatment at 450 to 600° C. is carried out, the density of some of the precipitates which have equivalent circle diameters of 50 nm or more is controlled.
    Type: Application
    Filed: February 27, 2012
    Publication date: March 27, 2014
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventors: Hiroyuki Okuno, Toshihiro Kugimiya
  • Publication number: 20140054588
    Abstract: There is provided an oxide semiconductor layer capable of making stable the electric characteristics of a thin-film transistor without requiring an oxidatively-treated layer when depositing a passivation layer or the like in display devices such as organic EL displays depositing and liquid crystal displays.
    Type: Application
    Filed: April 19, 2012
    Publication date: February 27, 2014
    Applicant: Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd.)
    Inventors: Takeaki Maeda, Toshihiro Kugimiya
  • Publication number: 20130341617
    Abstract: The oxide of the present invention for thin-film transistors is an In—Zn—Sn-based oxide containing In, Zn, and Sn, wherein when the respective contents (atomic %) of metal elements contained in the In—Zn—Sn-based oxide are expressed by [Zn], [Sn], and [In], the In—Zn—Sn-based oxide fulfills the following expressions (2) and (4) when [In]/([In]+[Sn])?0.5; or the following expressions (1), (3), and (4) when [In]/([In]+[Sn])?0.5. [In]/([In]+[Zn]+[Sn])?0.3 - - - (1), [In]/([In]+[Zn]+[Sn])?1.4×{[Zn]/([Zn]+[Sn])}?0.5 - - - (2), [Zn]/([In]+[Zn]+[Sn])?0.83 - - - (3), and 0.1?[In]/([In]+[Zn]+[Sn]) - - - (4). According to the present invention, oxide thin films for thin-film transistors can be obtained, which provide TFTs with excellent switching characteristics, and which have high sputtering rate in the sputtering and properly controlled etching rate in the wet etching.
    Type: Application
    Filed: March 8, 2012
    Publication date: December 26, 2013
    Applicants: Samsung Display Co., Ltd., KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
    Inventors: Hiroaki Tao, Aya Miki, Shinya Morita, Satoshi Yasuno, Toshihiro Kugimiya, Jae Woo Park, Je Hun Lee, Byung Du Ahn, Gun Hee Kim
  • Publication number: 20130270109
    Abstract: The oxides for semiconductor layers of thin-film transistors according to the present invention include: In; Zn; and at least one element (X group element) selected from the group consisting of Al, Si, Ta, Ti, La, Mg and Nb. The present invention makes it possible to provide oxides for semiconductor layers of thin-film transistors, in which connection thin-film transistors with In—Zn—O oxide semiconductors not containing Ga have favorable switching characteristics and high stress resistance, and in particular, show a small variation of the threshold voltage before and after positive bias stress tests, thereby having high stability.
    Type: Application
    Filed: December 28, 2011
    Publication date: October 17, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Shinya Morita, Aya Miki, Satoshi Yasuno, Toshihiro Kugimiya, Tomoya Kishi
  • Publication number: 20130248858
    Abstract: The interconnect structure of the present invention includes at least a gate insulator layer and an oxide semiconductor layer on a substrate, wherein the oxide semiconductor layer is a layered product having a first oxide semiconductor layer containing at least one element (Z group element) selected from the group consisting of In, Ga, Zn and Sn; and a second oxide semiconductor layer containing at least one element (X group element) selected from the group consisting of In, Ga, Zn and Sn and at least one element (Y group element) selected from the group consisting of Al, Si, Ti, Hf, Ta, Ge, W and Ni, and wherein the second oxide semiconductor layer is interposed between the first oxide semiconductor layer and the gate insulator layer.
    Type: Application
    Filed: December 1, 2011
    Publication date: September 26, 2013
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
    Inventors: Shinya Morita, Aya Miki, Satoshi Yasuno, Toshihiro Kugimiya
  • Publication number: 20130249571
    Abstract: Provided is a touch panel sensor which has excellent durability particularly in a longitudinal direction as in the case in which an indentation load is imposed, rarely undergoes the increase in electrical resistivity which may be caused by the disconnection of a wire or as elapse of time, has high reliability and high glossiness, and also has an excellent color-displaying capability. This touch panel sensor comprises a transparent conductive film and a wiring that is connected to the transparent conductive film, wherein the wiring comprises a refractory metal film, an Al alloy film and a high-melting-point metal film in this order when observed from the side of a substrate, and wherein the Al alloy film contains a rare earth element in an amount of 0.05-5 atomic %. It is preferred for the touch panel sensor that the hardness is 2-3.5 GPa and the density of grain boundary triple junctions in the Al alloy structure is 2×108 /mm2 or more.
    Type: Application
    Filed: November 30, 2011
    Publication date: September 26, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Hiroyuki Okuno, Aya Miki, Toshihiro Kugimiya
  • Publication number: 20130248855
    Abstract: This oxide for a semiconductor layer of a thin-film transistor contains Zn, Sn and In, and the content (at %) of the metal elements contained in the oxide satisfies formulas (1) to (3) when denoted as [Zn], [Sn] and [In], respectively. [In]/([In]+[Zn]+[Sn])??0.53×[Zn]/([Zn]+[Sn])+0.36 (1) [In]/([In]+[Zn]+[Sn])?2.28×[Zn]/([Zn]+[Sn])?2.01 (2) [In]/([In]+[Zn]+[Sn])?1.1×[Zn]/([Zn]+[Sn])?0.32 (3) The present invention enables a thin-film transistor oxide that achieves high mobility and has excellent stress resistance (negligible threshold voltage shift before and after applying stress) to be provided.
    Type: Application
    Filed: November 28, 2011
    Publication date: September 26, 2013
    Applicants: Samsung Display Co., Ltd., Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd.)
    Inventors: Aya Miki, Shinya Morita, Toshihiro Kugimiya, Satoshi Yasuno, Jae Woo Park, Je Hun Lee, Byung Du Ahn, Gun Hee Kim
  • Publication number: 20130240802
    Abstract: This oxide for a semiconductor layer of a thin-film transistor contains Zn, Sn and In, and at least one type of element (X group element) selected from an X group comprising Si, Hf, Ga, Al, Ni, Ge, Ta, W and Nb. The present invention enables a thin-film transistor oxide that achieves high mobility and has excellent stress resistance (negligible threshold voltage shift before and after applying stress) to be provided.
    Type: Application
    Filed: November 28, 2011
    Publication date: September 19, 2013
    Applicants: Samsung Display Co., Ltd., KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel ,Ltd.)
    Inventors: Aya Miki, Shinya Morita, Toshihiro Kugimiya, Satoshi Yasuno, Jae Woo Park, Je Hun Lee, Byung Du Ahn
  • Publication number: 20130228926
    Abstract: Provided is an interconnection structure that, in a display device such as an organic EL display or a liquid crystal display, has superior workability during wet etching even without providing an etch stop layer. The interconnection structure has, in the given order, a substrate, a semiconductor layer of a thin film transistor, and a metal interconnection film, and has a barrier layer between the semiconductor layer and the metal interconnection film. The semiconductor layer comprises an oxide semiconductor, the barrier layer has a layered structure of a high-melting-point metal thin film and a Si thin film, and the Si thin film is directly connected to the semiconductor layer.
    Type: Application
    Filed: October 11, 2011
    Publication date: September 5, 2013
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventors: Takeaki Maeda, Toshihiro Kugimiya
  • Publication number: 20130181218
    Abstract: An interconnection structure includes a semiconductor layer of a thin-film transistor and a metal interconnection film above a substrate in this order from a side of the substrate, and includes a barrier layer between the semiconductor layer and the metal interconnection film. The semiconductor layer is composed of an oxide semiconductor. The barrier layer is composed of a Ti oxide film containing TiOx (where x is from 1.0 to 2.0), and the Ti oxide film is directly connected to the semiconductor layer. The oxide semiconductor is composed of an oxide containing at least one element selected from the group consisting of In, Ga, Zn and Sn.
    Type: Application
    Filed: September 30, 2011
    Publication date: July 18, 2013
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventors: Takeaki Maeda, Toshihiro Kugimiya
  • Patent number: 8482189
    Abstract: A display device is provided with a Cu alloy film having high adhesiveness to a transparent substrate and a low electrical resistivity. The Cu alloy film for the display device is directly brought into contact with the transparent substrate, and the Cu alloy film has the multilayer structure, which includes a first layer (Y) composed of a Cu alloy containing, in total, 2-20 atm % of at least one element selected from among a group composed of Zn, Ni, Ti, Al, Mg, Ca, W, Nb, and Mn, and a second layer (X) which is composed of pure Cu or substantially a Cu alloy having Cu as the main component and has an electrical resistivity lower than that of the first layer (Y). The first layer (Y) is brought into contact with the transparent substrate.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: July 9, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Hiroshi Goto, Aya Miki, Katsufumi Tomihisa, Mototaka Ochi, Takashi Onishi, Toshihiro Kugimiya
  • Publication number: 20130136949
    Abstract: The present invention provides an Al alloy film that, in a production step of a thin-film transistor substrate, reflective film, reflective anode, touch panel sensor, or the like, can effectively prevent corrosion such as pinhole corrosion (black dots) or corrosion of the Al alloy surface when immersed in a sodium chloride solution, has superior corrosion resistance, is able to suppress hillock formation, and has superior heat resistance. The Al alloy thin film is used as a reflective film or a wiring film on a substrate, and contains 0.01-0.5 at % of Ta and/or Ti and 0.05-2.0 at % of a rare earth element.
    Type: Application
    Filed: September 26, 2011
    Publication date: May 30, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Hiroyuki Okuno, Toshihiro Kugimiya
  • Publication number: 20130119324
    Abstract: There is provided an oxide for semiconductor layers of thin-film transistors, which oxide can provide thin-film transistors with excellent switching characteristics and by which oxide favorable characteristics can stably be obtained even after the formation of passivation layers. The oxide to be used for semiconductor layers of thin-film transistors according to the present invention includes Zn, Sn, and Si.
    Type: Application
    Filed: July 28, 2011
    Publication date: May 16, 2013
    Applicants: Samsung Display Co., Ltd., KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
    Inventors: Shinya Morita, Aya Miki, Yumi Iwanari, Toshihiro Kugimiya, Satoshi Yasuno, Jae Woo Park, Je Hun Lee, Byung Du Ahn
  • Publication number: 20130122323
    Abstract: The present invention provides a display device which is provided with a Cu alloy film having high adhesion to an oxygen-containing insulator layer and a low electrical resistivity. The present invention relates to a Cu alloy film for a display device, said film having a stacked structure including a first layer (Y) composed of a Cu alloy containing, in total, 1.2-20 atm % of at least one element selected from among a group composed of Zn, Ni, Ti, Al, Mg, Ca, W, Nb and Mn, and a second layer (X) composed of pure Cu or a Cu alloy having Cu as a main component and an electrical resistivity lower than that of the first layer (Y). A part of or the whole first layer (Y) is directly in contact with an oxygen-containing insulator layer (27), and in the case where the first layer (Y) contains Zn or Ni, the thickness of the first layer (Y) is 10-100 nm, and in the case where the first layer (Y) does not contain Zn and Ni, the thickness of the first layer (Y) is 5-100 nm.
    Type: Application
    Filed: July 21, 2011
    Publication date: May 16, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel Ltd)
    Inventors: Aya Miki, Toshihiro Kugimiya, Yasuaki Terao
  • Publication number: 20130075720
    Abstract: An oxide semiconductor includes a first material including at least one selected from the group consisting of zinc (Zn) and tin (Sn), and a second material, where a value acquired by subtracting an electronegativity difference value between the second material and oxygen (O) from the electronegativity difference value between the first material and oxygen (O) is less than about 1.3.
    Type: Application
    Filed: July 20, 2012
    Publication date: March 28, 2013
    Applicants: Kobe Steel, Ltd., SAMSUNG DISPLAY CO., LTD.
    Inventors: Byung Du AHN, Je Hun LEE, Sei-Yong PARK, Jun Hyun PARK, Gun Hee KIM, Ji Hun LIM, Jae Woo PARK, Jin Seong PARK, Toshihiro KUGIMIYA, Aya MIKI, Shinya MORITA, Tomoya KISHI, Hiroaki TAO
  • Publication number: 20130032798
    Abstract: Disclosed is an oxide for a semiconductor layer of a thin-film transistor, said oxide being excellent in the switching characteristics of a thin-film transistor, specifically enabling favorable characteristics to be stably obtained even in a region of which the ZnO concentration is high and even after forming a passivation layer and after applying stress. The oxide is used in a semiconductor layer of a thin-film transistor, and the aforementioned oxide contains Zn and Sn, and further contains at least one element selected from group X consisting of Al, Hf, Ta, Ti, Nb, Mg, Ga, and the rare-earth elements.
    Type: Application
    Filed: April 18, 2011
    Publication date: February 7, 2013
    Applicants: SAMSUNG DISPLAY CO., LTD., KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventors: Aya Miki, Yumi Iwanari, Toshihiro Kugimiya, Shinya Morita, Yasuaki Terao, Satoshi Yasuno, Jae Woo Park, Je Hun Lee, Byung Du Ahn