Patents by Inventor Toshio Fujita

Toshio Fujita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050062667
    Abstract: A multiple frequency band antenna includes a dipole antenna (4a), which is formed of two dipole antenna elements (8a, 10a). Two extension elements (24a, 26a) extend outward from respective ones of opposed outer ends of the dipole antenna (4a). The length of the dipole antenna (4a) is determined to make the multiple frequency band antenna capable of receiving radio waves in the UHF band, and the sum of the lengths of the dipole antenna (4a) and the extension elements (24a, 26a) is determined to make the multiple frequency band antenna capable of receiving radio waves in the VHF band. PIN diodes (28a, 34a) are connected between the respective extension elements (24a, 26a) and the respective outer ends of the dipole antenna (4a).
    Type: Application
    Filed: April 12, 2004
    Publication date: March 24, 2005
    Inventors: Toshiaki Shirosaka, Toshio Fujita, Kiyotaka Tatekawa, Shingo Fujisawa, Eiji Shibuya
  • Publication number: 20040196204
    Abstract: A signal receiving system includes a variable directivity antenna having its directivity varied in accordance with a control signal applied thereto. A control signal generator generating the control signal is provided in a receiving apparatus. The receiving apparatus includes also a modulator operating to ASK (amplitude-shift-keying) modulate a carrier with the control signal from the control signal generator into an ASK modulated signal. The ASK modulated signal is applied through a transmission line to the variable directivity antenna, and a controller associated with the variable directivity antenna demodulates the ASK modulated signal to recover the control signal for use in varying the directivity of the variable directivity antenna.
    Type: Application
    Filed: March 9, 2004
    Publication date: October 7, 2004
    Inventors: Toshiaki Shirosaka, Toshio Fujita, Kiyotaka Tatekawa, Shingo Fujisawa
  • Patent number: 6574966
    Abstract: A gas turbine for power generation operated at a turbine nozzle inlet temperature ranging from 1200 to 1650° C., which is improved to obtain a high heat efficiency by making disk blades and nozzles arranged in first to final stages from optimum materials and optimally cooling these disk blades and nozzles, and to obtain a combined power generation system using the gas turbine. The combined power generation system includes a highly efficient gas turbine operated at a turbine nozzle inlet combustion gas temperature ranging from 1200 to 1650° C., and a high pressure-intermediate pressure-low pressure integral type steam turbine operated at a steam inlet temperature of 530° C. or more, wherein the gas turbine is configured such that turbine blades, nozzles and disks are each cooled, and the blades and nozzles are each made from an Ni-based alloy having a single crystal or columnar crystal structure and disks are made from a martensite steel.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: June 10, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Kishio Hidaka, Shigeyoshi Nakamura, Yutaka Fukui, Masao Shiga, Ryo Hiraga, Hajime Toriya, Toshio Fujita
  • Patent number: 6546713
    Abstract: A gas turbine for power generation operated at a turbine nozzle inlet temperature ranging from 1200 to 1650° C., which is improved to obtain a high heat efficiency by making disk blades and nozzles arranged in first to final stages from optimum materials and optimally cooling these disk blades and nozzles, and to obtain a combined power generation system using the gas turbine. The combined power generation system includes a highly efficient gas turbine operated at a turbine nozzle inlet combustion gas temperature ranging from 1200 to 1650° C., and a high pressure-intermediate pressure-low pressure integral type steam turbine operated at a steam inlet temperature of 530° C. or more, wherein the gas turbine is configured such that turbine blades, nozzles and disks are each cooled, and the blades and nozzles are each made from an Ni-based alloy having a single crystal or columnar crystal structure and disks are made from a martensite steel.
    Type: Grant
    Filed: June 8, 2000
    Date of Patent: April 15, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Kishio Hidaka, Shigeyoshi Nakamura, Yutaka Fukui, Masao Shiga, Ryo Hiraga, Hajime Toriya, Toshio Fujita
  • Publication number: 20020189229
    Abstract: An object of the present invention is to provide a gas turbine for power generation operated at a turbine nozzle inlet temperature ranging from 1200 to 1650° C., which is improved to obtain a high heat efficiency by making disk blades and nozzles arranged in first to final stages from optimum materials and optimally cooling these disk blades and nozzles, and a combined power generation system using the gas turbine.
    Type: Application
    Filed: April 18, 2002
    Publication date: December 19, 2002
    Inventors: Kishio Hidaka, Shigeyoshi Nakamura, Yutaka Fukui, Masao Shiga, Ryo Hiraga, Hajime Toriya, Toshio Fujita
  • Patent number: 6419453
    Abstract: The main object of the present invention is to provide a steam turbine rotor shaft whose high-temperature strength is excellent at a selected temperature of 650 degrees C. A steam turbine rotor shaft comprising 0.05% to 0.20% by weight of carbon, 0.20% or less by weight of silicon, 0.05% to 1.5% by weight of manganese, 0.01% to 1.0% by weight of nickel, 9.0% to 13.0% by weight of chrome, 0.05% to 2.0% by weight of molybdenum, 0.5% to 5.0% by weight of tungsten, 0.05% to 0.30% by weight of vanadium, 0.01% to 0.20% by weight of niobium, 0.5% to 10.0% by weight of cobalt, 0.01% to 0.1% by weight of nitrogen, 0.001% to 0.030% by weight of boron, 0.0005% to 0.006% by weight of aluminum, and the remaining parts substantially comprising iron and inevitable impurities.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: July 16, 2002
    Assignees: Hitachi, Ltd., The Japan Steel Works, Ltd.
    Inventors: Yutaka Fukui, Hiroyuki Doi, Masahiko Arai, Ryo Hiraga, Kenichiro Nomura, Toshio Fujita, Yasuhiko Tanaka
  • Publication number: 20010041137
    Abstract: The main object of the present invention is to provide a steam turbine rotor shaft whose high-temperature strength is excellent at a selected temperature of 650 degrees C.
    Type: Application
    Filed: March 5, 2001
    Publication date: November 15, 2001
    Inventors: Yutaka Fukui, Hiroyuki Doi, Masahiko Arai, Ryo Hiraga, Kenichiro Nomura, Toshio Fujita, Yasuhiko Tanaka
  • Patent number: 6271167
    Abstract: Disclosed are a catalyst for polymerizing olefins containing a solid catalyst component containing titanium, magnesium and halogen as essential components (component (A)); an organic aluminum compound (component (B)); and a silane compound (component (C)) represented by general formula (1) wherein R1 and R2 independently represent a straight, branched or cyclic saturated aliphatic hydrocarbon group or a silyl group, a method of preparing polyolefins using the catalyst as well as novel trimethoxysilane compounds represented by the general formula (1) in which R1 is a straight saturated aliphatic hydrocarbon group having 2 to 10 carbon atoms, and R2 represents a methyl group. Use of the catalyst enables efficient production of polyolefins having a low molecular weight (MFR>20 (g/10 minutes)), a broad molecular weight distribution (MLMFR/MFR>22) and a high stereoregularity when applied to polymerization of olefins having 3 or more carbon atoms.
    Type: Grant
    Filed: January 5, 2000
    Date of Patent: August 7, 2001
    Assignee: Japan Polyolefins Co., Ltd.
    Inventors: Masaki Fushimi, Toshio Fujita, Shintaro Inazawa
  • Patent number: 6193775
    Abstract: A coated granular fertilizer which makes it possible to independently design the period since its application till 10% dissolution-out and the period since 10% dissolution-out till completion of its dissolution-out is provided, which fertilizer is prepared by coating a granular fertilizer with a coating having a sugar polymer or its derivative dispersed therein, and has a time limit dissolution-out function, the former period till 10% dissolution-out and the latter dissolution-out duration being respectively capable of being controlled to within a range of 26 to 315 days and a range of 29 to 371 days.
    Type: Grant
    Filed: August 6, 1993
    Date of Patent: February 27, 2001
    Assignee: Chisso Corporation
    Inventors: Toshio Fujita, Shigemitsu Yoshida
  • Patent number: 6174132
    Abstract: A steam turbine in which principal components to be exposed to high temperatures are all made of ferritic steel, whereby the temperatures of main steam and reheat steam can be increased to 610-660 (° C.). The rotor shaft (23 in FIG. 1) of the steam turbine is made of ferritic forged steel whose 100,000-hour creep rupture strength is at least 15 (kg/mm2) at the service temperature of the rotor shaft. Likewise, the casing (18) is made of ferritic cast steel whose 100,000-hour creep rupture strength is at least 10 (kg/mm2). The steam turbine of high thermal efficiency can be applied to a steam-turbine power plant.
    Type: Grant
    Filed: May 11, 1998
    Date of Patent: January 16, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Masao Shiga, Ryo Hiraga, Takeshi Onoda, Nobuo Shimizu, Norio Yamada, Mitsuo Kuriyama, Kishio Hidaka, Shigeyoshi Nakamura, Yutaka Fukui, Toshio Fujita
  • Patent number: 6162389
    Abstract: A non heat-treated steel of high strength, toughness and machinability which can be used in its as-worked state without calling for any special treatment after working. It contains less than 0.05 wt % C, 0.005 to 2.0 wt % Si, 0.5 to 5.0 wt % Mn, 0.1 to 10.0 wt % Ni, more than 1.0 to 4.0 wt % Cu, 0.0002 to 1.0 wt % Al, 0.005 to 0.50 wt % S and 0.0010 to 0.0200 wt % N.
    Type: Grant
    Filed: May 26, 1998
    Date of Patent: December 19, 2000
    Assignee: Kawasaki Steel Corporation
    Inventors: Kazukuni Hase, Takashi Iwamoto, Yasuhiro Omori, Toshiyuki Hoshino, Tohru Hayashi, Keniti Amano, Toshio Fujita
  • Patent number: 6136110
    Abstract: This invention provides a ferritic heat-resistant steel suitable for a pressure-resistant member to be used at a temperature of 400 to 550.degree. C. The ferritic heat-resistant steel having an excellent high temperature strength contains, in terms of wt %, 0.05 to 0.15% of C, 0.10 to 0.08% of Si, 0.20 to 1.5% of Mn, 0.5 to 1.5% of Cr, 0.10 to 1.15% of Mo, 0.005 to 0.30% of V, 0.005 to 0.05% of Nb, 0.0002 to 0.0050% of B, and if necessary, 0.005 to 0.05% of Ti and 0.4 to 1.0% of W, either alone or in combination, and having a structure comprising not greater than 15% of pro-eutectoid ferrite, in terms of a metallic structural area ratio, and the balance of bainite. The present invention provides also a process for producing a ferritic heat-resistant steel having an excellent high temperature strength, comprising tempering the steel having the composition at a temperature within the range 950 to 1,010.degree. C., and conducting tempering while keeping a T.P. value within the range of 18.50.times.10.sup.
    Type: Grant
    Filed: August 18, 1997
    Date of Patent: October 24, 2000
    Assignees: Nippon Steel Corporation, Babcock-Hitachi Kabushiki Kaisha, Toshio Fujita
    Inventors: Katsukuni Hashimoto, Hiroyuki Mimura, Takashi Sato, Kohji Tamura, Toshio Fujita
  • Patent number: 6123504
    Abstract: A steam turbine includes a rotor shaft, movable blades assembled on the rotor shaft, fixed blades for guiding inflow of steam to the moving blades, and an inner casing for holding the fixed blades. The rotor shaft and at least a first stage of the movable blades are made of high-strength martensitic steel comprising 0.05-0.20(%) of C, at most 0.15(%) of Si, 0.3-0.7(%) of Mn, 9.5-13(%) of Cr, 0.3-0.7(%) of Ni, 0.05-0.35(%) of V, 0.02-0.15(%) of Nb, 0.01-0.06(%) of N, 0.05-0.5(%) of Mo, 1.0-3.5(%) of W, 2-10(%) of Co and 0.0005-0.03(%) of B and at least 78(%) of Fe (the percentages being given in terms of weight). The inner casings is made of martensitic cast steel comprising 0.06-0.16(%) of C, at most 0.5(%) of Si, at most 1(%) of Mn, 0.2-1.0(%) of Ni, 8-12(%) of Cr, 0.05-0.35(%) of V, 0.01-0.15(%) of Nb, 0.01-0.1(%) of N, at most 1.5% of Mo, 1-4(%) of W and 0.0005-0.03(%) of B and at least 85(%) of Fe (the percentages being given in terms of weight).
    Type: Grant
    Filed: February 21, 1995
    Date of Patent: September 26, 2000
    Assignee: Hitachi, Ltd.
    Inventors: Masao Shiga, Ryo Hiraga, Takeshi Onoda, Nobuo Shimizu, Norio Yamada, Mitsuo Kuriyama, Kishio Hidaka, Shigeyoshi Nakamura, Yutaka Fukui, Toshio Fujita
  • Patent number: 6063727
    Abstract: Disclosed are a catalyst for polymerizing olefins containing a solid catalyst component containing titanium, magnesium and halogen as essential components (component (A)); an organic aluminum compound (component (B)); and a silane compound (component (C)) represented by general formula (1) ##STR1## wherein R.sup.1 and R.sup.2 independently represent a straight, branched or cyclic saturated aliphatic hydrocarbon group or a silyl group, a method of preparing polyolefins using the catalyst as well as novel trimethoxysilane compounds represented by the general formula (1) in which R.sup.1 is a straight saturated aliphatic hydrocarbon group having 2 to 10 carbon atoms, and R.sup.2 represents a methyl group. Use of the catalyst enables efficient production of polyolefins having a low molecular weight (MFR>20 (g/10 minutes)), a broad molecular weight distribution (MLMFR/MFR>22) and a high stereoregularity when applied to polymerization of olefins having 3 or more carbon atoms.
    Type: Grant
    Filed: June 4, 1997
    Date of Patent: May 16, 2000
    Assignee: Japan Polyolefins Co., Ltd.
    Inventors: Masaki Fushimi, Toshio Fujita, Shintaro Inazawa
  • Patent number: 5991597
    Abstract: A converter for a satellite signal receiving antenna, comprising a input terminal for inputting a signal in a frequency band other than the output frequency band of the IF signal converted from the satellite signal, and where the IF signal and signal from the input terminal are mixed by a mixing circuit, and output through a coaxial cable from the IF output terminal.
    Type: Grant
    Filed: May 28, 1997
    Date of Patent: November 23, 1999
    Assignee: DX Antenna Co., Ltd.
    Inventors: Akihiko Nagatomi, Toshio Fujita, Masami Tanaka
  • Patent number: 5911842
    Abstract: A heat resisting steel whose metal structure is entirely martensite phase produced by tempering after quenching. The steel comprises, by weight, 0.05 to 0.20% C, not more than 0.15% Si, not more than 1.5% Mn, not more than 1.0% Ni, 8.5 to 13.0% Cr, not more than 3.50% Mo, not more than 3.5% W, 0.05 to 0.30% V, 0.01 to 0.20% Nb, not more than 5.0% Co, 0.001 to 0.020% boron, 0.005 to 0.040% nitrogen, 0.0005 to 0.0050% oxygen and 0.00001 to 0.0002% hydrogen. The steel has preferably not more than 10 of the Cr equivalent. The steel has 10 kgf/mm.sup.2 or more of 100,000 hours creep rupture strength at 650.degree. C.
    Type: Grant
    Filed: April 30, 1997
    Date of Patent: June 15, 1999
    Assignees: Hitachi, Ltd., The Japane Steel Works, Ltd.
    Inventors: Masao Shiga, Kishio Hidaka, Norio Yamada, Shigeyoshi Nakamura, Yutaka Fukui, Nobuo Shimizu, Ryoichi Kaneko, Yasuhiro Harada, Yasuo Watanabe, Toshio Fujita, Norio Morisada, Yasuhiko Tanaka
  • Patent number: 5766376
    Abstract: This invention provides a ferritic heat-resistant steel having excellent HAZ softening resistance characteristics and exhibiting a high creep strength up to a high temperature of not lower than 500.degree. C., and a method of producing such a steel, the steel comprising in terms of mass %, 0.01 to 0.30% of C, 0.02 to 0.80% of Si, 0.20 to 1.50% of Mn, 0.50 to 5.00% of Cr, 0.01 to 1.50% of Mo, 0.01 to 3.50% of W, 0.02 to 1.00% of V, 0.01 to 0.50% of Nb, 0.001 to 0.06% of N, one or both of 0.001 to 0.8% of Ti and 0.001 to 0.8% of Zr, wherein a value (Ti+Zr) in (Cr, Fe, Ti, Zr) of a M.sub.23 C.sub.6 type carbide in the steel is 5 to 65%, and the present invention provides a method of producing the same.
    Type: Grant
    Filed: July 22, 1996
    Date of Patent: June 16, 1998
    Assignees: Nippon Steel Corporation, Babcock-Hitachi Kabushiki Kaisha, Toshio Fujita
    Inventors: Yasushi Hasegawa, Hisashi Naoi, Takashi Sato, Kohji Tamura, Toshio Fujita
  • Patent number: 5749228
    Abstract: A steam turbine in which principal components to be exposed to high temperatures are all made of ferritic steel, whereby the temperatures of main steam and reheat steam can be increased to 610-660 (.degree.C.). The rotor shaft (23 in FIG. 1) of the steam turbine is made of ferritic forged steel whose 100,000-hour creep rupture strength is at least 15 (kg/mm.sup.2) at the service temperature of the rotor shaft. Likewise, the casing (18) is made of ferritic cast steel whose 100,000-hour creep rupture strength is at least 10 (kg/mm.sup.2). The steam turbine of high thermal efficiency can be applied to a steam-turbine power plant.
    Type: Grant
    Filed: May 30, 1995
    Date of Patent: May 12, 1998
    Assignee: Hitachi, Ltd.
    Inventors: Masao Shiga, Ryo Hiraga, Takeshi Onoda, Nobuo Shimizu, Norio Yamada, Mitsuo Kuriyama, Kishio Hidaka, Shigeyoshi Nakamura, Yutaka Fukui, Toshio Fujita
  • Patent number: 5693729
    Abstract: A catalyst for producing a polyolefin having a high melting point and a high stereoregularity, which comprises: (A) a solid catalyst component containing titanium, magnesium and halogen, (B) an organic aluminum compound, and (C) an organic silicon compound represented by Formula (1); ##STR1## wherein R.sup.1, R.sup.2 and R.sup.3 each represents a C.sub.1-3 hydrocarbon group.
    Type: Grant
    Filed: January 4, 1995
    Date of Patent: December 2, 1997
    Assignee: Showa Denko K.K.
    Inventors: Masaki Fushimi, Toshio Fujita
  • Patent number: 5650024
    Abstract: A martensitic heat-resisting steel comprises, in terms of % by mass, 0.01 to 0.30% of C, 0.02 of 0.80% of Si, 0.20 to 1.00% of Mn, 5.00 to 18.00% of Cr, 0.005 to 1.00% of Mo, 0.20 to 3.50% of W, 0.02 to 1.00% of V, 0.01 to 0.50% of Nb, 0.01 to 0.25% of N, and at least one element selected from the group consisting of Ti, Zr, Ta and Hf in an amount of 0.005 to 2.0% for each of the elements, the volume of (Ti %+Zr %+Ta %+Hf %) in the metal component M of M.sub.23 C.sub.6 type carbides therein being from 5 to 65%. The heat-resisting steel is produced by a process comprising the steps ofadding Ti, Zr, Ta and Hf to a molten steel having chemical components as mentioned above, during the period from 10 minutes before completion of refining to completion of refining, casting said molten steel, working the resulting casting, solution treating said worked product, subjecting said worked product to temporary cooling stop at a temperature from 950.degree. to 1,000.degree. C.
    Type: Grant
    Filed: August 25, 1995
    Date of Patent: July 22, 1997
    Assignees: Nippon Steel Corporation, Toshio Fujita
    Inventors: Yasushi Hasegawa, Masahiro Ohgami, Nobuo Mizuhashi, Hisashi Naoi, Toshio Fujita