Patents by Inventor Toshiyuki Yokosuka

Toshiyuki Yokosuka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240062986
    Abstract: The purpose of the present invention is to provide a charged particle beam device that can specify irradiation conditions for primary charged particles that can obtain a desired charged state without adjusting the acceleration voltage. The charged particle beam device according to the present invention specifies the irradiation conditions for a charged particle beam in which the charged state of a sample is switched between a positive charge and a negative charge, and adjusts the irradiation conditions according to the relationship between the specified irradiation conditions and the irradiation conditions when an observation image of the sample has been acquired (see FIG. 8).
    Type: Application
    Filed: March 1, 2021
    Publication date: February 22, 2024
    Inventors: Naho TERAO, Toshiyuki YOKOSUKA, Hideyuki KOTSUJI, Tomohito NAKANO, Hajime KAWANO
  • Publication number: 20230420215
    Abstract: A charged particle beam device for irradiating a sample arranged in a sample chamber to be observed with an electron beam includes: a plasma generation device to which a bias voltage is applicable to generate plasma containing charged particles for applying charges onto a side wall of a pattern of the sample; and a guide that guides the charged particles in the plasma generated by the plasma generation device to the pattern of the sample.
    Type: Application
    Filed: June 5, 2023
    Publication date: December 28, 2023
    Applicant: Hitachi High-Tech Corporation
    Inventors: Toshiyuki YOKOSUKA, Hideyuki KOTSUJI, Hajime KAWANO
  • Publication number: 20230411108
    Abstract: A charged particle beam device includes: a plasma generation device attached to a sample chamber through a connecting member; a guide including a hollow portion configured to guide a plasma generated by the plasma generation device in a direction toward a stage; a first voltage source configured to apply a voltage to the stage; and a second voltage source configured to adjust the plasma generation device and the guide to a predetermined potential, in which the guide is disposed to avoid an opening of an objective lens through which a charged particle beam passes and to position a tip of the guide between the objective lens and the stage.
    Type: Application
    Filed: May 18, 2023
    Publication date: December 21, 2023
    Applicant: Hitachi High-Tech Corporation
    Inventors: Hideyuki Kotsuji, Toshiyuki Yokosuka, Hajime Kawano
  • Patent number: 11798780
    Abstract: The scanning charged particle beam microscope according to the present application is characterized in that, in acquiring an image of the FOV (field of view), interspaced beam irradiation points are set, and then, a deflector is controlled so that a charged particle beam scan is performed faster when the charged particle beam irradiates a position on the sample between each of the irradiation points than when the charged particle beam irradiates a position on the sample corresponding to each of the irradiation points (a position on the sample corresponding to each pixel detecting a signal). This allows the effects from a micro-domain electrification occurring within the FOV to be mitigated or controlled.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: October 24, 2023
    Assignee: Hitachi High-Tech Corporation
    Inventors: Toshiyuki Yokosuka, Chahn Lee, Hideyuki Kazumi, Hajime Kawano, Shahedul Hoque, Kumiko Shimizu, Hiroyuki Takahashi
  • Patent number: 11443914
    Abstract: The objective of the present invention is to use brightness images acquired under different energy conditions to estimate the size of a defect in the depth direction in a simple manner. A charged-particle beam device according to the present invention determines the brightness ratio for each irradiation position on a brightness image while changing parameters varying the signal amount, estimates the position of the defect in the depth direction on the basis of the parameters at which the brightness ratio is at a minimum, and estimates the size of the defect in the depth direction on the basis of the magnitude of the brightness ratio (see FIG. 5).
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: September 13, 2022
    Assignee: Hitachi High-Tech Corporation
    Inventors: Toshiyuki Yokosuka, Hajime Kawano, Kouichi Kurosawa, Hideyuki Kazumi
  • Publication number: 20220122804
    Abstract: The scanning charged particle beam microscope according to the present application is characterized in that, in acquiring an image of the FOV (field of view), interspaced beam irradiation points are set, and then, a deflector is controlled so that a charged particle beam scan is performed faster when the charged particle beam irradiates a position on the sample between each of the irradiation points than when the charged particle beam irradiates a position on the sample corresponding to each of the irradiation points (a position on the sample corresponding to each pixel detecting a signal). This allows the effects from a micro-domain electrification occurring within the FOV to be mitigated or controlled.
    Type: Application
    Filed: December 28, 2021
    Publication date: April 21, 2022
    Inventors: Toshiyuki YOKOSUKA, Chahn LEE, Hideyuki KAZUMI, Hajime KAWANO, Shahedul HOQUE, Kumiko SHIMIZU, Hiroyuki TAKAHASHI
  • Patent number: 11239052
    Abstract: The scanning charged particle beam microscope according to the present application is characterized in that, in acquiring an image of the FOV (field of view), interspaced beam irradiation points are set, and then, a deflector is controlled so that a charged particle beam scan is performed faster when the charged particle beam irradiates a position on the sample between each of the irradiation points than when the charged particle beam irradiates a position on the sample corresponding to each of the irradiation points (a position on the sample corresponding to each pixel detecting a signal). This allows the effects from a micro-domain electrification occurring within the FOV to be mitigated or controlled.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: February 1, 2022
    Assignee: Hitachi High-Tech Corporation
    Inventors: Toshiyuki Yokosuka, Chahn Lee, Hideyuki Kazumi, Hajime Kawano, Shahedul Hoque, Kumiko Shimizu, Hiroyuki Takahashi
  • Patent number: 11211226
    Abstract: The present disclosure provides a pattern cross-sectional shape estimation system which includes a charged particle ray device which includes a scanning deflector that scans a charged particle beam, a detector that detects charged particles, and an angle discriminator that is disposed in a front stage of the detector and discriminates charged particles to be detected, and an arithmetic device that generates a luminance of an image, and calculates a signal waveform of a designated region on the image using the luminance. The arithmetic device generates angle discrimination images using signal electrons at different detection angles, and estimates a side wall shape of a measurement target pattern.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: December 28, 2021
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Toshiyuki Yokosuka, Hirohiko Kitsuki, Daisuke Bizen, Makoto Suzuki, Yusuke Abe, Kenji Yasui, Mayuka Osaki, Hideyuki Kazumi
  • Publication number: 20210366685
    Abstract: The objective of the present invention is to use brightness images acquired under different energy conditions to estimate the size of a defect in the depth direction in a simple manner. A charged-particle beam device according to the present invention determines the brightness ratio for each irradiation position on a brightness image while changing parameters varying the signal amount, estimates the position of the defect in the depth direction on the basis of the parameters at which the brightness ratio is at a minimum, and estimates the size of the defect in the depth direction on the basis of the magnitude of the brightness ratio (see FIG. 5).
    Type: Application
    Filed: December 18, 2018
    Publication date: November 25, 2021
    Inventors: Toshiyuki YOKOSUKA, Hajime KAWANO, Kouichi KUROSAWA, Hideyuki KAZUMI
  • Patent number: 11164720
    Abstract: To measure a depth of a three-dimensional structure, for example, a hole or a groove, formed in a sample without preparing information in advance, an electron microscope detects, among emitted electrons generated by irradiating a sample with a primary electron beam, an emission angle in a predetermined range, the emission angle being formed between an axial direction of the primary electron beam and an emission direction of the emitted electrons, and outputs a detection signal corresponding to the number of the emitted electrons detected. An emission angle distribution of a detection signal is obtained based on a plurality of detection signals, and an opening angle is obtained based on a change point of the emission angle distribution, the opening angle being based on an optical axis direction of the primary electron beam with respect to the bottom portion of the three-dimensional structure.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: November 2, 2021
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Kenji Yasui, Mayuka Osaki, Makoto Suzuki, Hirohiko Kitsuki, Toshiyuki Yokosuka, Daisuke Bizen, Yusuke Abe
  • Patent number: 11133147
    Abstract: The purpose of the present invention is to provide a charged particle ray device which is capable of simply estimating the cross-sectional shape of a pattern. The charged particle ray device according to the present invention acquires a detection signal for each different discrimination condition of an energy discriminator, and estimates the cross-sectional shape of a sample by comparing the detection signal for each discrimination condition with a reference pattern (see FIG. 5).
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: September 28, 2021
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Toshiyuki Yokosuka, Hajime Kawano, Kouichi Kurosawa, Hideyuki Kazumi, Chahn Lee
  • Patent number: 11101100
    Abstract: The purpose of the present invention is to provide a charged particle ray device which is capable of simply estimating the cross-sectional shape of a pattern. The charged particle ray device according to the present invention acquires a detection signal for each different discrimination condition of an energy discriminator, and estimates the cross-sectional shape of a sample by comparing the detection signal for each discrimination condition with a reference pattern (see FIG. 5).
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: August 24, 2021
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Toshiyuki Yokosuka, Hajime Kawano, Kouichi Kurosawa, Hideyuki Kazumi, Chahn Lee
  • Patent number: 11011348
    Abstract: Provided is a scanning electron microscope. The scanning electron microscope is capable of removing a charge generated on a side wall of a deep hole or groove, and inspects and measures a bottom portion of the deep hole or groove with high accuracy.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: May 18, 2021
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Daisuke Bizen, Natsuki Tsuno, Takafumi Miwa, Makoto Sakakibara, Toshiyuki Yokosuka, Hideyuki Kazumi
  • Publication number: 20200321189
    Abstract: The present disclosure provides a pattern cross-sectional shape estimation system which includes a charged particle ray device which includes a scanning deflector that scans a charged particle beam, a detector that detects charged particles, and an angle discriminator that is disposed in a front stage of the detector and discriminates charged particles to be detected, and an arithmetic device that generates a luminance of an image, and calculates a signal waveform of a designated region on the image using the luminance. The arithmetic device generates angle discrimination images using signal electrons at different detection angles, and estimates a side wall shape of a measurement target pattern.
    Type: Application
    Filed: March 6, 2020
    Publication date: October 8, 2020
    Inventors: Toshiyuki YOKOSUKA, Hirohiko KITSUKI, Daisuke BIZEN, Makoto SUZUKI, Yusuke ABE, Kenji YASUI, Mayuka OSAKI, Hideyuki KAZUMI
  • Publication number: 20200312615
    Abstract: The scanning charged particle beam microscope according to the present application is characterized in that, in acquiring an image of the FOV (field of view), interspaced beam irradiation points are set, and then, a deflector is controlled so that a charged particle beam scan is performed faster when the charged particle beam irradiates a position on the sample between each of the irradiation points than when the charged particle beam irradiates a position on the sample corresponding to each of the irradiation points (a position on the sample corresponding to each pixel detecting a signal). This allows the effects from a micro-domain electrification occurring within the FOV to be mitigated or controlled.
    Type: Application
    Filed: June 12, 2020
    Publication date: October 1, 2020
    Inventors: Toshiyuki YOKOSUKA, Chahn LEE, Hideyuki KAZUMI, Hajime KAWANO, Shahedul HOQUE, Kumiko SHIMIZU, Hiroyuki TAKAHASHI
  • Publication number: 20200294756
    Abstract: The purpose of the present invention is to provide a charged particle ray device which is capable of simply estimating the cross-sectional shape of a pattern. The charged particle ray device according to the present invention acquires a detection signal for each different discrimination condition of an energy discriminator, and estimates the cross-sectional shape of a sample by comparing the detection signal for each discrimination condition with a reference pattern (see FIG. 5).
    Type: Application
    Filed: August 24, 2018
    Publication date: September 17, 2020
    Inventors: Toshiyuki YOKOSUKA, Hajime KAWANO, Kouichi KUROSAWA, Hideyuki KAZUMI, Chahn LEE
  • Patent number: 10770266
    Abstract: A charged particle beam device includes an electron source which generates an electron beam, an objective lens which is applied with a coil current to converge the electron beam on a sample, a control unit which controls the current to be applied to the objective lens, a hysteresis characteristic storage unit which stores hysteresis characteristic information of the objective lens, a history information storage unit which stores history information related to the coil current, and an estimation unit which estimates a magnetic field generated by the objective lens on the basis of the coil current, the history information, and the hysteresis characteristic information.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: September 8, 2020
    Assignee: Hitachi High-Tech Corporation
    Inventors: Tomohito Nakano, Toshiyuki Yokosuka, Yuko Sasaki, Minoru Yamazaki, Yuzuru Mochizuki
  • Publication number: 20200234916
    Abstract: To measure a depth of a three-dimensional structure, for example, a hole or a groove, formed in a sample without preparing information for each pattern or calibration in advance. The invention provides an electron microscope including a detection unit that detects, among emitted electrons generated from a sample by irradiating the sample with a primary electron beam, emitted electrons of which an emission angle is in a predetermined range, the emission angle being an angle formed between an axial direction of the primary electron beam and an emission direction of the emitted electrons from the sample, and outputs a detection signal corresponding to the number of the emitted electrons which are detected.
    Type: Application
    Filed: January 21, 2020
    Publication date: July 23, 2020
    Inventors: Kenji YASUI, Mayuka OSAKI, Makoto SUZUKI, Hirohiko KITSUKI, Toshiyuki YOKOSUKA, Daisuke BIZEN, Yusuke ABE
  • Patent number: 10720306
    Abstract: The scanning charged particle beam microscope according to the present application is characterized in that, in acquiring an image of the FOV (field of view), interspaced beam irradiation points are set, and then, a deflector is controlled so that a charged particle beam scan is performed faster when the charged particle beam irradiates a position on the sample between each of the irradiation points than when the charged particle beam irradiates a position on the sample corresponding to each of the irradiation points (a position on the sample corresponding to each pixel detecting a signal). This allows the effects from a micro-domain electrification occurring within the FOV to be mitigated or controlled.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: July 21, 2020
    Assignee: Hitachi High-Tech Corporation
    Inventors: Toshiyuki Yokosuka, Chahn Lee, Hideyuki Kazumi, Hajime Kawano, Shahedul Hoque, Kumiko Shimizu, Hiroyuki Takahashi
  • Patent number: 10566172
    Abstract: A charged particle beam apparatus with reduced frequency of lens resetting operations and thus with improved throughput. The apparatus includes an electron source configured to generate an electron beam, an objective lens to which coil current is adapted to be applied to converge the electron beam on a sample, a focal position adjustment device configured to adjust the focal position of the electron beam, a detector configured to detect electrons from the sample, a display unit configured to display an image of the sample in accordance with a signal from the detector, a storage unit configured to store information on the hysteresis characteristics of the objective lens, and an estimation unit configured to estimate a magnetic field generated by the objective lens on the basis of the coil current, the amount of adjustment of the focal position by the focal position adjustment device, and the information on the hysteresis characteristics.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: February 18, 2020
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Tomohito Nakano, Toshiyuki Yokosuka, Yuko Sasaki, Minoru Yamazaki, Yuzuru Mochizuki