Patents by Inventor Trevor K. Carlisle

Trevor K. Carlisle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9446348
    Abstract: The present invention provides gels, solutions, films, membranes, compositions, and other materials containing polymerized and/or non-polymerized room-temperature ionic liquids (RTILs). These materials are useful in catalysis, gas separation and as antistatic agents. The RTILs are preferably imidazolium-based RTILs which are optionally substituted, such as with one or more hydroxyl groups. Optionally, the materials of the present invention are composite materials comprising both polymerized and non-polymerized RTILs. The RTIL polymer is formed from polymerized RTIL cations typically synthesized as monomers and polymerized in the presence of the non-polymerized RTIL cations to provide a solid composite material. The non-polymerized RTIL cations are not covalently bound to the cationic polymer but remain as free cations within the composite material able to associate with charged subunits of the polymer. These composite materials are useful in catalysis, gas separation, and antistatic applications.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: September 20, 2016
    Assignee: The Regents of the University of Colorado, a body corporate
    Inventors: Jason E. Bara, Trevor K. Carlisle, Evan S. Hatakeyama, Douglas L. Gin, Richard D. Noble, Robert L. Kerr, Andrew L. LaFrate
  • Publication number: 20160175764
    Abstract: The present invention provides gels, solutions, films, membranes, compositions, and other materials containing polymerized and/or non-polymerized room-temperature ionic liquids (RTILs). These materials are useful in catalysis, gas separation and as antistatic agents. The RTILs are preferably imidazolium-based RTILs which are optionally substituted, such as with one or more hydroxyl groups. Optionally, the materials of the present invention are composite materials comprising both polymerized and non-polymerized RTILs. The RTIL polymer is formed from polymerized RTIL cations typically synthesized as monomers and polymerized in the presence of the non-polymerized RTIL cations to provide a solid composite material. The non-polymerized RTIL cations are not covalently bound to the cationic polymer but remain as free cations within the composite material able to associate with charged subunits of the polymer. These composite materials are useful in catalysis, gas separation, and antistatic applications.
    Type: Application
    Filed: January 6, 2015
    Publication date: June 23, 2016
    Inventors: JASON E. BARA, TREVOR K. CARLISLE, EVAN S. HATAKEYAMA, DOUGLAS L. GIN, RICHARD D. NOBLE, ROBERT L. KERR, ANDREW L. LaFRATE
  • Patent number: 8926732
    Abstract: The present invention provides gels, solutions, films, membranes, compositions, and other materials containing polymerized and/or non-polymerized room-temperature ionic liquids (RTILs). These materials are useful in catalysis, gas separation and as antistatic agents. The RTILs are preferably imidazolium-based RTILs which are optionally substituted, such as with one or more hydroxyl groups. Optionally, the materials of the present invention are composite materials comprising both polymerized and non-polymerized RTILs. The RTIL polymer is formed from polymerized RTIL cations typically synthesized as monomers and polymerized in the presence of the non-polymerized RTIL cations to provide a solid composite material. The non-polymerized RTIL cations are not covalently bound to the cationic polymer but remain as free cations within the composite material able to associate with charged subunits of the polymer. These composite materials are useful in catalysis, gas separation, and antistatic applications.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: January 6, 2015
    Assignee: The Regents of the University of Colorado, a Body Corporate
    Inventors: Jason E. Bara, Trevor K. Carlisle, Evan S. Hatakeyama, Douglas L. Gin, Richard D. Noble, Robert L. Kerr, Andrew L. LaFrate
  • Publication number: 20120186446
    Abstract: The present invention provides gels, solutions, films, membranes, compositions, and other materials containing polymerized and/or non-polymerized room-temperature ionic liquids (RTILs). These materials are useful in catalysis, gas separation and as antistatic agents. The RTILs are preferably imidazolium-based RTILs which are optionally substituted, such as with one or more hydroxyl groups. Optionally, the materials of the present invention are composite materials comprising both polymerized and non-polymerized RTILs. The RTIL polymer is formed from polymerized RTIL cations typically synthesized as monomers and polymerized in the presence of the non-polymerized RTIL cations to provide a solid composite material. The non-polymerized RTIL cations are not covalently bound to the cationic polymer but remain as free cations within the composite material able to associate with charged subunits of the polymer. These composite materials are useful in catalysis, gas separation, and antistatic applications.
    Type: Application
    Filed: July 23, 2010
    Publication date: July 26, 2012
    Applicant: The Regents of the University of Colorado, a body corporate
    Inventors: Jason Bara, Trevor K. Carlisle, Evan S. Hatakeyama, Douglas L. Gin, Richard D. Noble, Robert L. Kerr, Andrew L. LaFrate