Patents by Inventor Tristan Thomas Trutna

Tristan Thomas Trutna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9851799
    Abstract: A haptic device configured to provide haptic feedback to a user. In one aspect, a user or part of a user is located on the haptic device including actuators and damping elements. A haptic feedback wave is generated by an actuator and propagated to the user or part of the user on the haptic device. Damping elements receive the haptic feedback wave and suppress the haptic feedback wave to reduce a reflection thereof.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: December 26, 2017
    Assignee: Oculus VR, LLC
    Inventors: Sean Jason Keller, Tristan Thomas Trutna, Ravish Mehra, Christoph Omid Hohnerlein, Elia Gatti, Riccardo DeSalvo, David R. Perek
  • Publication number: 20170351333
    Abstract: An actuator configured to provide haptic feedback to a user. The actuator is located on a plate and is configured to apply various excitations to the plate to generate a mechanical wave propagating in the controlled direction. The excitations can be a translational motion of the actuator (or a portion of the actuator) in two or three perpendicular axes. Alternatively, the excitations can be a non-translational motion (e.g., rotation about an axis) of the actuator (or a portion of the actuator). By generating the mechanical wave traveling in the controlled direction, loss of energy due to scattering of the mechanical wave can be obviated.
    Type: Application
    Filed: August 24, 2017
    Publication date: December 7, 2017
    Inventors: Sean Jason Keller, Tristan Thomas Trutna, Ravish Mehra, Christoph Omid Hohnerlein, Elia Gatti, Riccardo DeSalvo, David R. Perek
  • Patent number: 9816799
    Abstract: A deformation sensing fabric comprises a fabric substrate comprising a first fabric layer and a first conductive element woven into the first fabric layer. The first conductive element outputs a first instrumented signal, responsive to an applied stimulus signal, indicative of a measure of change in an electrical property of the first conductive element in response to a strain applied to the fabric substrate along a long-axis of the first conductive element. The first conductive element is instrumented by a measurement system which stimulates the first conductive element and measures an electrical property of the first conductive element.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: November 14, 2017
    Assignee: Oculus VR, LLC
    Inventors: Sean Jason Keller, Tristan Thomas Trutna, David R. Perek, Bruce A. Cleary, III, Brian Michael Scally
  • Publication number: 20170315286
    Abstract: An electronic device includes a display frame, a light guide plate disposed within the display frame, and a light source disposed along an edge of the light guide plate. The light source is secured to the display frame. The electronic device further includes an enclosure in which the display frame and the light guide plate are disposed. The enclosure is configured to allow thermal expansion of the display frame and of the light guide plate. The light guide plate and the display frame have substantially similar coefficients of thermal expansion.
    Type: Application
    Filed: July 14, 2017
    Publication date: November 2, 2017
    Inventors: Tristan Thomas Trutna, Edward Francis Burress, Nigel Stuart Keam
  • Patent number: 9778746
    Abstract: An actuator configured to provide haptic feedback to a user. The actuator is located on a plate and is configured to apply various excitations to the plate to generate a mechanical wave propagating in the controlled direction. The excitations can be a translational motion of the actuator (or a portion of the actuator) in two or three perpendicular axes. Alternatively, the excitations can be a non-translational motion (e.g., rotation about an axis) of the actuator (or a portion of the actuator). By generating the mechanical wave traveling in the controlled direction, loss of energy due to scattering of the mechanical wave can be obviated.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: October 3, 2017
    Assignee: Oculus VR, LLC
    Inventors: Sean Jason Keller, Tristan Thomas Trutna, Ravish Mehra, Christoph Omid Hohnerlein, Elia Gatti, Riccardo DeSalvo, David R. Perek
  • Patent number: 9759851
    Abstract: An electronic device includes a display frame, a light guide plate disposed within the display frame, and a light source disposed along an edge of the light guide plate. The light source is secured to the display frame. The electronic device further includes an enclosure in which the display frame and the light guide plate are disposed. The enclosure is configured to allow thermal expansion of the display frame and of the light guide plate. The light guide plate and the display frame have substantially similar coefficients of thermal expansion.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: September 12, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Tristan Thomas Trutna, Edward Francis Burress, Nigel Stuart Keam
  • Patent number: 9741216
    Abstract: A sensor records information about skin stretch perceived by a user based on an interaction with a real object. The sensor includes a mechanical housing configured to be worn on a finger of a user, and a mechanism coupled to the mechanical housing. The mechanism includes a first bearing that rotates in a first direction in response to an interaction with a surface. The mechanism also includes a second bearing coupled to the first bearing, such that rotation of the first bearing causes the second bearing to rotate in a direction opposite to the first direction. The second bearing is in contact with a portion of the finger, and includes a feedback surface that simulates a force associated with the interaction with the surface. The sensor includes a controller configured to monitor rotation of the second bearing and record skin stretch information responsive to the interaction with the surface.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: August 22, 2017
    Assignee: Oculus VR, LLC
    Inventors: Sean Jason Keller, David R. Perek, Tristan Thomas Trutna, Garett Andrew Ochs, Nicholas Roy Corson, Raymond King
  • Publication number: 20170192228
    Abstract: A virtual reality (VR) headset includes an electronic display element that outputs image light via a plurality of sub-pixels that are separated from each other by a dark space. To mask the dark space between adjacent sub-pixels in the electronic display element, an optics block (e.g., a lens) in the VR headset oscillates or the electronic display element oscillates. For example, a piezoelectric material is coupled to the electronic display element or to the optics block. When a voltage is applied to the piezoelectric material, vibration of the piezoelectric material causes oscillation of the electronic display element or the optics block. The oscillation generates blur spots in the image light that mask the dark space between adjacent sub-pixels, with each blur spot corresponding to a blurred image of a sub-pixel in the image light.
    Type: Application
    Filed: December 13, 2016
    Publication date: July 6, 2017
    Inventors: Sean Jason Keller, Tristan Thomas Trutna, David R. Perek, Bruce A. Cleary, III, Brian Michael Scally
  • Publication number: 20170185152
    Abstract: An input interface configured to be worn on a portion of a user's body includes tendons coupled to various sections of the glove. A tendon includes one or more activation mechanisms that, when activated, prevent or restrict a particular range of motion. Additionally, a tendon may be coupled to a plate that is coupled to one or more additional tendon, so when an activation mechanism included in the tendon is activated, the one or more additional tendons coupled to the plate that are also coupled to the tendon move, stiffening the additional tendons as well as the tendon.
    Type: Application
    Filed: October 4, 2016
    Publication date: June 29, 2017
    Inventors: Sean Jason Keller, Tristan Thomas Trutna, Nicholas Roy Corson, Garett Andrew Ochs, Raymond King
  • Publication number: 20170176267
    Abstract: A deformation sensing apparatus comprises an elastic substrate, a conductive element, and an additional conductive element. The conductive element includes conductive joints that are separated from each other by resolving elements along a length of the conductive element. Different combinations of conductive joints and resolving elements correspond to different segments of the deformation sensing apparatus. Based on a change in capacitance between a conductive joint and the additional conductive element when a strain is applied to the deformation sensing apparatus, the deformation sensing apparatus generates a signal that allows determination of how the strain deforms the deformation sensing apparatus.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 22, 2017
    Inventors: Sean Jason Keller, Tristan Thomas Trutna, David R. Perek, Bruce A. Cleary, III, Brian Michael Scally
  • Publication number: 20170176167
    Abstract: A deformation sensing fabric comprises a fabric substrate comprising a first fabric layer and a first conductive element woven into the first fabric layer. The first conductive element outputs a first instrumented signal, responsive to an applied stimulus signal, indicative of a measure of change in an electrical property of the first conductive element in response to a strain applied to the fabric substrate along a long-axis of the first conductive element. The first conductive element is instrumented by a measurement system which stimulates the first conductive element and measures an electrical property of the first conductive element.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 22, 2017
    Inventors: Sean Jason Keller, Tristan Thomas Trutna, David R. Perek, Bruce A. Cleary, III, Brian Michael Scally
  • Publication number: 20170168576
    Abstract: Embodiments relate to a system and a method for providing haptic feedback to a user by controlling an area of a surface of a haptic assembly in touch (directly or indirectly) with a user. The haptic assembly can be actuated such that a surface area of the haptic assembly in contact with a user can be adjusted. An area of the haptic assembly in contact with a user can be changed by modifying a shape of the haptic assembly. Hence, by changing the shape of the haptic assembly, a user touching a virtual object in a virtual space with a particular rigidity can be emulated.
    Type: Application
    Filed: December 13, 2016
    Publication date: June 15, 2017
    Inventors: Sean Jason Keller, Tristan Thomas Trutna, Nicholas Roy Corson, Garett Andrew Ochs, Raymond King, Elia Gatti
  • Publication number: 20170168577
    Abstract: A wearable heat transfer device provides a user with haptic feedback providing sensations of hot or cold. The wearable heat transfer device comprises a heat source/sink and a programmable interface having heat transfer characteristics that are modified based on a signal received by the programmable interface. For example, a thickness of the programmable interface changes based on the received signal, altering heat transfer by the programmable interface. In another example, an electric field is applied to the programmable interface, changing one or more properties of the programmable interface affecting heat transfer.
    Type: Application
    Filed: December 15, 2016
    Publication date: June 15, 2017
    Inventors: Sean Jason Keller, Tristan Thomas Trutna, David R. Perek, Bruce A. Cleary, III, Brian Michael Scally
  • Publication number: 20170168773
    Abstract: A system modifies data generating haptic feedback to account for changes in user perception of haptic feedback. The system identifies haptic data and determines an estimated amplitude of haptic feedback corresponding to a portion of the haptic data. Responsive to the estimated amplitude of the haptic feedback corresponding to the portion of the haptic data exceeding a threshold value, a refractory period is determined that will occur after haptic feedback corresponding to the portion of the haptic data is applied to the user. The portion of the haptic data is provided to an input interface, and a set of haptic data associated with times within a duration of the refractory period from the identified haptic data is removed to form an adjusted data set that is provided to the input interface to provide haptic feedback to the user in accordance with adjusted haptic data set.
    Type: Application
    Filed: December 12, 2016
    Publication date: June 15, 2017
    Inventors: Sean Jason Keller, Tristan Thomas Trutna, David R. Perek, Bruce A. Cleary, III, Brian Michael Scally
  • Publication number: 20170168558
    Abstract: A kinesthetic sensor measure angular displacement of body parts of users by measuring a density of substances contained in a conduit of the kinesthetic sensor. For example, the kinesthetic sensor measures the density of substance including in a conduit by transmitting a signal into the conduit and measuring the signal after the signal passes through the conduit and one or more substances included in the conduit. Based on the density of the one or more substances included in the conduit from the measured signal, an angular displacement of a user's body part proximate to the kinesthetic sensor is determined. Kinesthetic sensors may use different architectures such as an open-loop, a closed-loop architecture, or an architecture using blood vessels as conduits. Additionally, kinesthetic sensors can be flexible to conform to physical contours of different body parts.
    Type: Application
    Filed: December 15, 2016
    Publication date: June 15, 2017
    Inventors: Sean Jason Keller, Tristan Thomas Trutna, David R. Perek, Bruce A. Cleary, III, Brian Michael Scally
  • Patent number: 9675370
    Abstract: A minimal access tool includes a frame arranged to be attached to an arm of a user, a tool shaft having a proximal end and a distal end, where the tool shaft proximal end is connected to the frame. The tool further includes an input joint having a first end connected to the frame and a second end arranged to receive user input, the input joint including a virtual center-of-rotation (VC) mechanism which provides a center of rotation that generally coincides with a wrist joint of the user. An output joint is connected to the tool shaft distal end, where the output joint is coupled to the input joint via a mechanical transmission connected therebetween to correlate motion of the input joint to motion of the output joint.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: June 13, 2017
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Shorya Awtar, Jens Nielsen, Tristan Thomas Trutna, Andrew Mansfield, Rosa Abani, Patrick Quigley, James Geiger
  • Publication number: 20170160807
    Abstract: An input interface configured to be worn on a portion of a user's body includes tendons coupled to various sections of the garment. A tendon includes one or more activation mechanisms that, when activated, prevent or restrict a particular range of motion. The tendon may include a tendon web that controls multiple portions of the user's body with an activation mechanism. The tendon may connect to the garment through a textile mesh that distributes force over a wider area of the user's skin. An activation mechanism may apply force to the textile mesh to modify the stiffness of the textile mesh or to modify the pressure applied by the textile mesh. The tendon may be a wire or have a form with variable width. The activation mechanism may be a solenoid using a permanent magnet, which may have multiple alternating magnetic poles.
    Type: Application
    Filed: December 7, 2016
    Publication date: June 8, 2017
    Inventors: Sean Jason Keller, Tristan Thomas Trutna, Garett Andrew Ochs, Selso Luanava, Nicholas Roy Corson
  • Publication number: 20170131769
    Abstract: An input interface configured to be worn on a portion of a user's body includes tendons coupled to various rigid cuffs in the input interface. The tendons include one or more activation mechanisms that, when activated, retract the tendons, which repositions a rigid cuff into a position relative to the user's body that restricts or prevents some form of movement of the user's body. Various activation mechanisms may be included in the tendons in various embodiments.
    Type: Application
    Filed: October 4, 2016
    Publication date: May 11, 2017
    Inventors: Sean Jason Keller, Tristan Thomas Trutna, Garett Andrew Ochs, Nicholas Roy Corson, Raymond King
  • Publication number: 20170131771
    Abstract: An input interface for a virtual reality (VR) system environment includes one or more actuators that, when activated, prevent movement of the input interface by a user. For example, the input interface has magnetic actuation mechanism preventing movement of certain portions of the input interface when actuated, allowing simulation of interactions with virtual objects in a virtual environment presented by the VR system environment. In one embodiment, the input interface includes one or more magnets on a tendon or other portion of the input interface that moves with a portion of the user's body and one or more additional magnets fixed relative to the input interface. Magnets on the portion of the input interface that moves with the portion of the user's body and the fixed additional magnets act as a soft detent mechanism holding the portion of the user's body in in one or more specified positions.
    Type: Application
    Filed: October 20, 2016
    Publication date: May 11, 2017
    Inventors: Sean Jason Keller, Tristan Thomas Trutna, Garett Andrew Ochs, Selso Luanava, Nicholas Roy Corson
  • Publication number: 20170131770
    Abstract: A virtual reality system including a garment worn by a user, such as a glove, includes a jamming that jams movement of a portion of the user's body by increasing a rigidity of certain portions of the garment or by preventing a certain portion of the garment from expanding past a certain length. This allows the garment to simulate the physical sensation that occurs when the user touches an object. For example, to simulate the sensation of holding a coffee mug, the jamming mechanism prevents the user's fingers from curling after the user's fingers have reached a position equivalent to making physical contact with the coffee mug.
    Type: Application
    Filed: October 4, 2016
    Publication date: May 11, 2017
    Inventors: Sean Jason Keller, Tristan Thomas Trutna, Garett Andrew Ochs, Selso Luanava, Nicholas Roy Corson