Patents by Inventor Troy E Jackson

Troy E Jackson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10265534
    Abstract: Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous implantable cardioverter defibrillator (SICD) and a leadless pacing device (LPD) are described. For example, the SICD may detect a tachyarrhythmia within a first electrical signal from a heart and determine, based on the tachyarrhythmia, to deliver anti-tachyarrhythmia shock therapy to the patient to treat the detected arrhythmia. The LPD may receive communication from the SICD requesting the LPD deliver anti-tachycardia pacing to the heart and determine, based on a second electrical signal from the heart sensed by the LPD, whether to deliver anti-tachycardia pacing (ATP) to the heart. In this manner, the SICD and LPD may communicate to coordinate ATP and/or cardioversion/defibrillation therapy. In another example, the LPD may be configured to deliver post-shock pacing after detecting delivery of anti-tachyarrhythmia shock therapy.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: April 23, 2019
    Assignee: Medtronic, Inc.
    Inventors: Saul E. Greenhut, Robert J. Nehls, Walter H. Olson, Xusheng Zhang, Wade M. Demmer, Troy E. Jackson, James D. Reinke
  • Publication number: 20190054297
    Abstract: An implantable medical device system is configured to detect a tachyarrhythmia from a cardiac electrical signal and start an ATP therapy delay period. The implantable medical device determines whether the cardiac electrical signal received during the ATP therapy delay period satisfies ATP delivery criteria. A therapy delivery module is controlled to cancel the delayed ATP therapy if the ATP delivery criteria are not met and deliver the delayed ATP therapy if the ATP delivery criteria are met.
    Type: Application
    Filed: August 15, 2017
    Publication date: February 21, 2019
    Inventors: Xusheng ZHANG, Yanina GRINBERG, Paul R. SOLHEIM, Troy E. JACKSON, Timothy A. EBELING, Vladimir P. NIKOLSKI
  • Patent number: 10201710
    Abstract: An implantable medical device comprises therapy delivery circuitry and processing circuitry. The therapy delivery circuitry is configured to deliver anti-tachycardia pacing (ATP) therapy to a heart of a patient. The ATP therapy includes one or more pulse trains and each of the one or more pulse trains includes a plurality of pacing pulses. The processing circuitry is configured to, for at least one of the plurality of pacing pulses of at least one of the one or more pulse trains, determine at least one latency metric of an evoked response of the heart to the pacing pulse. The processing circuitry is further configured to modify the ATP therapy based on the at least one latency metric.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: February 12, 2019
    Assignee: Medtronic, Inc.
    Inventors: Troy E. Jackson, Vincent P. Ganion
  • Patent number: 10022063
    Abstract: Techniques for determining paced cardiac depolarization waveform morphological templates are described. For example, an implantable medical device (IMD) may sense a cardiac electrogram of a heart, identify cardiac depolarizations within the cardiac electrogram, and determine that the cardiac depolarizations are paced cardiac depolarizations resulting from delivery of a pacing pulse to the heart by another IMD without detecting the pacing pulse and without communicating with the other IMD. The IMD may identify paced cardiac depolarization waveforms of the paced cardiac depolarizations, determine a paced cardiac depolarization waveform morphological template based on the identified paced cardiac depolarization waveforms, determine a normal cardiac depolarization waveform morphological template based on the paced cardiac depolarization waveform morphological template, and compare the normal cardiac depolarization waveform morphological template to subsequent cardiac depolarization waveforms.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: July 17, 2018
    Assignee: Medtronic, Inc.
    Inventor: Troy E. Jackson
  • Patent number: 9895544
    Abstract: A medical device performs a method for computing an estimate of a physiological variable. The method includes sensing a physiological signal and measuring an event of the physiological signal. The device initializes a value of a long-term metric of the event measurement, wherein the long-term metric corresponds to a time interval correlated to a response time of the physiological variable to changes in the event. The estimate of the long-term metric is updated in a memory of the medical device using a previous long-term metric and a current measurement of the event. The device detects a need for computing the physiological variable and computes an estimate of the physiological variable using the updated long-term metric.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: February 20, 2018
    Assignee: Medtronic, Inc.
    Inventors: Wade M. Demmer, Troy E. Jackson, Paul A. Belk
  • Patent number: 9889303
    Abstract: A method for sensing far-field R-waves in a leadless, intracardiac pacemaker implanted in an atrium of a patient's heart may involve sensing an electrical signal generated by the heart with two electrodes and a first sensing channel and/or a second sensing channel of the pacemaker, comparing a first timing marker from the first sensing channel with a second timing marker from the second sensing channel, and either determining that the sensed signal is a P-wave, if the first and second timing markers indicate that the sensed signal was sensed by the first and second sensing channels within a predetermined threshold of time from one another, or determining that the sensed signal is a far-field R-wave, if the sensed signal is sensed by the second sensing channel and not sensed by the first sensing channel.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: February 13, 2018
    Assignee: Medtronic, Inc.
    Inventors: Mark L. Brown, Saul E. Greenhut, Troy E. Jackson
  • Publication number: 20170312516
    Abstract: An implantable medical device comprises therapy delivery circuitry and processing circuitry. The therapy delivery circuitry is configured to deliver anti-tachycardia pacing (ATP) therapy to a heart of a patient. The ATP therapy includes one or more pulse trains and each of the one or more pulse trains includes a plurality of pacing pulses. The processing circuitry is configured to, for at least one of the plurality of pacing pulses of at least one of the one or more pulse trains, determine at least one latency metric of an evoked response of the heart to the pacing pulse. The processing circuitry is further configured to modify the ATP therapy based on the at least one latency metric.
    Type: Application
    Filed: April 28, 2016
    Publication date: November 2, 2017
    Inventors: Troy E. Jackson, Vincent P. Ganion
  • Publication number: 20170266442
    Abstract: An extra-cardiovascular implantable cardioverter defibrillator (ICD) system receives a cardiac electrical signal by an electrical sensing circuit via an extra-cardiovascular sensing electrode vector and senses cardiac events from the cardiac electrical signal. The ICD system detects tachycardia from the cardiac electrical signal and determines a tachycardia cycle length from the cardiac electrical signal. The ICD system determines an ATP interval based on the tachycardia cycle length and sets an extended ATP interval that is longer than the ATP interval. The ICD delivers ATP pulses to a patient's heart via an extra-cardiovascular pacing electrode vector different than the sensing electrode vector. The ATP pulses include a leading ATP pulse delivered at the extended ATP interval after a cardiac event is sensed from the cardiac electrical signal and a second ATP pulse delivered at the ATP interval following the leading ATP pulse.
    Type: Application
    Filed: March 16, 2016
    Publication date: September 21, 2017
    Inventor: Troy E. JACKSON
  • Publication number: 20170095665
    Abstract: A medical device performs a method for computing an estimate of a physiological variable. The method includes sensing a physiological signal and measuring an event of the physiological signal. The device initializes a value of a long-term metric of the event measurement, wherein the long-term metric corresponds to a time interval correlated to a response time of the physiological variable to changes in the event. The estimate of the long-term metric is updated in a memory of the medical device using a previous long-term metric and a current measurement of the event. The device detects a need for computing the physiological variable and computes an estimate of the physiological variable using the updated long-term metric.
    Type: Application
    Filed: December 19, 2016
    Publication date: April 6, 2017
    Inventors: Wade M. DEMMER, Troy E. JACKSON, Paul A. BELK
  • Publication number: 20170043174
    Abstract: Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous implantable cardioverter defibrillator (SICD) and a leadless pacing device (LPD) are described. For example, the SICD may detect a tachyarrhythmia within a first electrical signal from a heart and determine, based on the tachyarrhythmia, to deliver anti-tachyarrhythmia shock therapy to the patient to treat the detected arrhythmia. The LPD may receive communication from the SICD requesting the LPD deliver anti-tachycardia pacing to the heart and determine, based on a second electrical signal from the heart sensed by the LPD, whether to deliver anti-tachycardia pacing (ATP) to the heart. In this manner, the SICD and LPD may communicate to coordinate ATP and/or cardioversion/defibrillation therapy. In another example, the LPD may be configured to deliver post-shock pacing after detecting delivery of anti-tachyarrhythmia shock therapy.
    Type: Application
    Filed: October 26, 2016
    Publication date: February 16, 2017
    Inventors: Saul E. GREENHUT, Robert J. NEHLS, Walter H. OLSON, Xusheng ZHANG, Wade M. DEMMER, Troy E. JACKSON, James D. REINKE
  • Publication number: 20170035315
    Abstract: Techniques for determining paced cardiac depolarization waveform morphological templates are described. For example, an implantable medical device (IMD) may sense a cardiac electrogram of a heart, identify cardiac depolarizations within the cardiac electrogram, and determine that the cardiac depolarizations are paced cardiac depolarizations resulting from delivery of a pacing pulse to the heart by another IMD without detecting the pacing pulse and without communicating with the other IMD. The IMD may identify paced cardiac depolarization waveforms of the paced cardiac depolarizations, determine a paced cardiac depolarization waveform morphological template based on the identified paced cardiac depolarization waveforms, determine a normal cardiac depolarization waveform morphological template based on the paced cardiac depolarization waveform morphological template, and compare the normal cardiac depolarization waveform morphological template to subsequent cardiac depolarization waveforms.
    Type: Application
    Filed: October 17, 2016
    Publication date: February 9, 2017
    Inventor: Troy E. Jackson
  • Patent number: 9533156
    Abstract: A medical device performs a method for computing an estimate of a physiological variable. The method includes sensing a physiological signal and measuring an event of the physiological signal. The device initializes a value of a long-term metric of the event measurement, wherein the long-term metric corresponds to a time interval correlated to a response time of the physiological variable to changes in the event. The estimate of the long-term metric is updated in a memory of the medical device using a previous long-term metric and a current measurement of the event. The device detects a need for computing the physiological variable and computes an estimate of the physiological variable using the updated long-term metric.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: January 3, 2017
    Assignee: Medtronic, Inc.
    Inventors: Wade M. Demmer, Troy E. Jackson, Paul A. Belk
  • Patent number: 9492677
    Abstract: Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous implantable cardioverter defibrillator (SICD) and a leadless pacing device (LPD) are described. For example, the SICD may detect a tachyarrhythmia within a first electrical signal from a heart and determine, based on the tachyarrhythmia, to deliver anti-tachyarrhythmia shock therapy to the patient to treat the detected arrhythmia. The LPD may receive communication from the SICD requesting the LPD deliver anti-tachycardia pacing to the heart and determine, based on a second electrical signal from the heart sensed by the LPD, whether to deliver anti-tachycardia pacing (ATP) to the heart. In this manner, the SICD and LPD may communicate to coordinate ATP and/or cardioversion/defibrillation therapy. In another example, the LPD may be configured to deliver post-shock pacing after detecting delivery of anti-tachyarrhythmia shock therapy.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: November 15, 2016
    Assignee: Medtronic, Inc.
    Inventors: Saul E. Greenhut, Robert J. Nehls, Walter H. Olson, Xusheng Zhang, Wade M. Demmer, Troy E. Jackson, James D. Reinke
  • Patent number: 9468392
    Abstract: Techniques for determining paced cardiac depolarization waveform morphological templates are described. For example, an implantable medical device (IMD) may sense a cardiac electrogram of a heart, identify cardiac depolarizations within the cardiac electrogram, and determine that the cardiac depolarizations are paced cardiac depolarizations resulting from delivery of a pacing pulse to the heart by another IMD without detecting the pacing pulse and without communicating with the other IMD. The IMD may identify paced cardiac depolarization waveforms of the paced cardiac depolarizations, determine a paced cardiac depolarization waveform morphological template based on the identified paced cardiac depolarization waveforms, determine a normal cardiac depolarization waveform morphological template based on the paced cardiac depolarization waveform morphological template, and compare the normal cardiac depolarization waveform morphological template to subsequent cardiac depolarization waveforms.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: October 18, 2016
    Assignee: Medtronic, Inc.
    Inventor: Troy E. Jackson
  • Publication number: 20160228026
    Abstract: Techniques for determining paced cardiac depolarization waveform morphological templates are described. For example, an implantable medical device (IMD) may sense a cardiac electrogram of a heart, identify cardiac depolarizations within the cardiac electrogram, and determine that the cardiac depolarizations are paced cardiac depolarizations resulting from delivery of a pacing pulse to the heart by another IMD without detecting the pacing pulse and without communicating with the other IMD. The IMD may identify paced cardiac depolarization waveforms of the paced cardiac depolarizations, determine a paced cardiac depolarization waveform morphological template based on the identified paced cardiac depolarization waveforms, determine a normal cardiac depolarization waveform morphological template based on the paced cardiac depolarization waveform morphological template, and compare the normal cardiac depolarization waveform morphological template to subsequent cardiac depolarization waveforms.
    Type: Application
    Filed: February 6, 2015
    Publication date: August 11, 2016
    Inventor: Troy E. JACKSON
  • Publication number: 20160067486
    Abstract: A method for sensing far-field R-waves in a leadless, intracardiac pacemaker implanted in an atrium of a patient's heart may involve sensing an electrical signal generated by the heart with two electrodes and a first sensing channel and/or a second sensing channel of the pacemaker, comparing a first timing marker from the first sensing channel with a second timing marker from the second sensing channel, and either determining that the sensed signal is a P-wave, if the first and second timing markers indicate that the sensed signal was sensed by the first and second sensing channels within a predetermined threshold of time from one another, or determining that the sensed signal is a far-field R-wave, if the sensed signal is sensed by the second sensing channel and not sensed by the first sensing channel.
    Type: Application
    Filed: October 9, 2014
    Publication date: March 10, 2016
    Inventors: Mark L. Brown, Saul E. Greenhut, Troy E. Jackson
  • Publication number: 20150297905
    Abstract: Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous implantable cardioverter defibrillator (SICD) and a leadless pacing device (LPD) are described. For example, the SICD may detect a tachyarrhythmia within a first electrical signal from a heart and determine, based on the tachyarrhythmia, to deliver anti-tachyarrhythmia shock therapy to the patient to treat the detected arrhythmia. The LPD may receive communication from the SICD requesting the LPD deliver anti-tachycardia pacing to the heart and determine, based on a second electrical signal from the heart sensed by the LPD, whether to deliver anti-tachycardia pacing (ATP) to the heart. In this manner, the SICD and LPD may communicate to coordinate ATP and/or cardioversion/defibrillation therapy. In another example, the LPD may be configured to deliver post-shock pacing after detecting delivery of anti-tachyarrhythmia shock therapy.
    Type: Application
    Filed: July 1, 2015
    Publication date: October 22, 2015
    Inventors: Saul E. GREENHUT, Robert J. NEHLS, Walter H. OLSON, Xusheng ZHANG, Wade M. DEMMER, Troy E. JACKSON, James D. REINKE
  • Patent number: 9072914
    Abstract: Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous implantable cardioverter defibrillator (SICD) and a leadless pacing device (LPD) are described. For example, the SICD may detect a tachyarrhythmia within a first electrical signal from a heart and determine, based on the tachyarrhythmia, to deliver anti-tachyarrhythmia shock therapy to the patient to treat the detected arrhythmia. The LPD may receive communication from the SICD requesting the LPD deliver anti-tachycardia pacing to the heart and determine, based on a second electrical signal from the heart sensed by the LPD, whether to deliver anti-tachycardia pacing (ATP) to the heart. In this manner, the SICD and LPD may communicate to coordinate ATP and/or cardioversion/defibrillation therapy. In another example, the LPD may be configured to deliver post-shock pacing after detecting delivery of anti-tachyarrhythmia shock therapy.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: July 7, 2015
    Assignee: Medtronic, Inc.
    Inventors: Saul E Greenhut, Robert J Nehls, Walter H Olson, Xusheng Zhang, Wade M Demmer, Troy E Jackson, James D Reinke
  • Patent number: 9002443
    Abstract: A medical device and associated method for detecting and treating tachyarrhythmias acquires a cardiac signal using electrodes coupled to a sensing module. Cardiac events are sensed from the cardiac signal and a processing module computes a first morphology metric for each sensed cardiac event occurring during a time segment of the cardiac signal. The first morphology metrics corresponding to an event originating in a ventricular chamber are counted. The first processing module computes a second morphology metric for the time segment of the cardiac signal in response to the count of the first morphology metrics meeting a threshold number of events. The time segment is classified as a shockable segment in response to the second morphology metric meeting a detection criterion.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 7, 2015
    Assignee: Medtronic, Inc.
    Inventors: Xusheng Zhang, Mark L. Brown, Paul J. DeGroot, Saul E. Greenhut, Troy E. Jackson
  • Patent number: 8965505
    Abstract: A medical device and method for detecting and classifying cardiac rhythm episodes that includes a sensing module to sense cardiac events, a therapy delivery module, and a detection module configured to determine intervals between the sensed cardiac events, determine a predetermined cardiac episode is occurring in response to the determined intervals, determine whether a ventricular rate is greater than an atrial rate in response to the determined intervals, determine whether undersensing is occurring in response to the ventricular rate being greater than the atrial rate, perform a supraventricular tachycardia (SVT) discrimination analysis in response to undersensing occurring, and control the therapy delivery module to deliver therapy in response to the SVT discrimination analysis.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 24, 2015
    Assignee: Medtronic, Inc.
    Inventors: Sandra B. Charlton, Troy E. Jackson, Benjamin P. Rhodes